3D crystal structure identification using fuzzy neural networks


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of recognizing nano-scale images of lattice projections comes down to identification of crystal lattice structure. The paper considers two types of fuzzy neural networks that can be used for tackling the problem at hand: the Takagi-Sugeno-Kang model and Mamdani-Zadeh model (the latter being a modification of the Wang-Mendel fuzzy neural network). We offer a threestage neural network learning process. In the first two stages crystal lattices are grouped in non-overlapping classes, and lattices belonging to overlapping classes are recognized at the third stage. In the research, we thoroughly investigate the applicability of the neural net models to structure identification of 3D crystal lattices.

作者简介

D. Kirsh

Samara National Research University; Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kirshdv@gmail.com
俄罗斯联邦, Samara, 443086; Samara, 443001

O. Soldatova

Samara National Research University

Email: kirshdv@gmail.com
俄罗斯联邦, Samara, 443086

A. Kupriyanov

Samara National Research University; Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences

Email: kirshdv@gmail.com
俄罗斯联邦, Samara, 443086; Samara, 443001

I. Lyozin

Samara National Research University

Email: kirshdv@gmail.com
俄罗斯联邦, Samara, 443086

I. Lyozina

Samara National Research University

Email: kirshdv@gmail.com
俄罗斯联邦, Samara, 443086

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017