Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 26, № 4 (2017)

Article

Shallow and deep learning for image classification

Ososkov G., Goncharov P.

Аннотация

The paper is focused on the idea to demonstrate the advantages of deep learning approaches over ordinary shallow neural network on their comparative applications to image classifying from such popular benchmark databases as FERET and MNIST. An autoassociative neural network is used as a standalone program realized the nonlinear principal component analysis for prior extracting the most informative features of input data for neural networks to be compared further as classifiers. A special study of the optimal choice of activation function and the normalization transformation of input data allows to improve efficiency of the autoassociative program. One more study devoted to denoising properties of this program demonstrates its high efficiency even on noisy data. Three types of neural networks are compared: feed-forward neural net with one hidden layer, deep network with several hidden layers and deep belief network with several pretraining layers realized restricted Boltzmann machine. The number of hidden layer and the number of hidden neurons in them were chosen by cross-validation procedure to keep balance between number of layers and hidden neurons and classification efficiency. Results of our comparative study demonstrate the undoubted advantage of deep networks, as well as denoising power of autoencoders. In our work we use both multiprocessor graphic card and cloud services to speed up our calculations. The paper is oriented to specialists in concrete fields of scientific or experimental applications, who have already some knowledge about artificial neural networks, probability theory and numerical methods.

Optical Memory and Neural Networks. 2017;26(4):221-248
pages 221-248 views

3D crystal structure identification using fuzzy neural networks

Kirsh D., Soldatova O., Kupriyanov A., Lyozin I., Lyozina I.

Аннотация

The problem of recognizing nano-scale images of lattice projections comes down to identification of crystal lattice structure. The paper considers two types of fuzzy neural networks that can be used for tackling the problem at hand: the Takagi-Sugeno-Kang model and Mamdani-Zadeh model (the latter being a modification of the Wang-Mendel fuzzy neural network). We offer a threestage neural network learning process. In the first two stages crystal lattices are grouped in non-overlapping classes, and lattices belonging to overlapping classes are recognized at the third stage. In the research, we thoroughly investigate the applicability of the neural net models to structure identification of 3D crystal lattices.

Optical Memory and Neural Networks. 2017;26(4):249-256
pages 249-256 views

The neural network model synthesis based on the fractal analysis

Subbotin S.

Аннотация

The problem of neural network model synthesis using the fractal analysis is addressed in the paper. The set of indicators characterizing the data sample properties from the unified position based on the fractal analysis principles is proposed. The methods of sample fractal dimension determining are proposed. These methods and indicators can be used to solve the problem of data dimensionality reduction. The set of indicators characterizing properties of neural network model is proposed. These indicators can be used in the process of neural network synthesis for the weights set contrasting, also as to find and remove the non-informative features and non-informative connections from the neural network model. The developed indicators and methods are implemented in software and studied at practical problem solving.

Optical Memory and Neural Networks. 2017;26(4):257-273
pages 257-273 views

Statistical encoding algorithm for hierarchical image compression

Gashnikov M.

Аннотация

We analyze statistical encoding algorithms as one of the type of general methods of image compression. An approach we proposed allows us to improve effectiveness of a lossy image compression. We develop a statistical encoding algorithm that remains effective when compressing images with raw errors. It can be used as a part of any methods of image compression performing encoding of decorrelated signals with nonuniform distribution of probabilities. Coding specific data of a hierarchical compression method, we experimentally compared our algorithm with ZIP and ARJ archivers.

Optical Memory and Neural Networks. 2017;26(4):274-279
pages 274-279 views

Influence of whispering gallery modes on light focusing by dielectric circular cylinder

Kozlov D., Kozlova E., Kotlyar V.

Аннотация

In this paper diffraction of a plane monochromatic TE-wave on an ideal homogeneous dielectric cylinder with several resonant wavelength scale radii is analyzed. Two subsequent near-surface maxima of intensity (two focuses) generated at the cylinder output were found on the optical axis. The first subwavelength focus is formed by one of the whispering gallery mode lobes. Its intensity is 50 times the incident light intensity and its full width at the half maximum of the intensity is equal to 0.155 of the incident wavelength. The second focus is two times less in intensity. Its focal spot known as a photonic nanojet is stretched toward the optical axis. The second focus is formed at a distance about the wavelength from the cylinder surface. Its width is equal to 0.44 of the wavelength and its length is two wavelengths. The abilities of light focusing by a two-layered cylinder and influence of materials absorption on the light focusing are also examined by numerical simulation.

Optical Memory and Neural Networks. 2017;26(4):280-288
pages 280-288 views

Development of an artificial neural network for controlling motor speeds of belt weighers and separator in cement production

Muravyova E., Mustaev R.

Аннотация

An artificial neural network for controlling the motor speeds of belt weighers and a separator of a cement grinding unit intended for production of a three-component cement of various grades was developed and researched. The purpose of developing a neural network was to solve a problem associated with the large error in the amount of cement at the outlet relative to a given capacity, as well as to increase the speed of the control system and to increase its fault tolerance. As a result of the development, a two-layer unidirectional network with a sigmoidal function of hidden layer neurons activation and a linear function of output layer neurons activation was used. The network has trained on 50 examples over 120 epochs. The development of the neural network was performed in the Matlab environment using the Matlab Neural Network Toolbox. It is possible to use the obtained artificial neural network in conjunction with a SCADA-system using the OPC-server. The developed neural network can be used in control systems for dosing raw materials at cement manufacturing plants utilizing a dry process and a closed cycle.

Optical Memory and Neural Networks. 2017;26(4):289-297
pages 289-297 views

Hybrid optical-digital system of texture recognition with liquid crystal input device

Kuzmin M., Rogov S.

Аннотация

The results of experimental research of working hybrid optical-digital image recognition system based on features extracted from Fourier spectra are presented. To form the features an optical Fourier processor with liquid-crystal input device is used. Recognition is carried out with computer (PC) using a neural network algorithm. The possibility of applying the developed system for recognition of the terrain images obtained by aerial photography is shown.

Optical Memory and Neural Networks. 2017;26(4):298-299
pages 298-299 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».