3D crystal structure identification using fuzzy neural networks


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of recognizing nano-scale images of lattice projections comes down to identification of crystal lattice structure. The paper considers two types of fuzzy neural networks that can be used for tackling the problem at hand: the Takagi-Sugeno-Kang model and Mamdani-Zadeh model (the latter being a modification of the Wang-Mendel fuzzy neural network). We offer a threestage neural network learning process. In the first two stages crystal lattices are grouped in non-overlapping classes, and lattices belonging to overlapping classes are recognized at the third stage. In the research, we thoroughly investigate the applicability of the neural net models to structure identification of 3D crystal lattices.

Авторлар туралы

D. Kirsh

Samara National Research University; Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kirshdv@gmail.com
Ресей, Samara, 443086; Samara, 443001

O. Soldatova

Samara National Research University

Email: kirshdv@gmail.com
Ресей, Samara, 443086

A. Kupriyanov

Samara National Research University; Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences

Email: kirshdv@gmail.com
Ресей, Samara, 443086; Samara, 443001

I. Lyozin

Samara National Research University

Email: kirshdv@gmail.com
Ресей, Samara, 443086

I. Lyozina

Samara National Research University

Email: kirshdv@gmail.com
Ресей, Samara, 443086

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2017