Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 29, № 2 (2019)

Mathematical Method in Pattern Recognition

Detection of Liver Cancer Using Modified Fuzzy Clustering and Decision Tree Classifier in CT Images

Das A., Das P., Panda S., Sabut S.

Аннотация

Manual detection and characterization of liver cancer using computed tomography (CT) scan images is a challenging task. In this paper, we have presented an automatic approach that integrates the adaptive thresholding and spatial fuzzy clustering approach for detection of cancer region in CT scan images of liver. The algorithm was tested in a series of 123 real-time images collected from the different subjects at Institute of Medical Science and SUM Hospital, India. Initially the liver was separated from other parts of the body with adaptive thresholding and then the cancer affected lesions from liver was segmented with spatial fuzzy clustering. The informative features were extracted from segmented cancerous region and were classified into two types of liver cancers i.e., hepatocellular carcinoma (HCC) and metastatic carcinoma (MET) using multilayer perceptron (MLP) and C4.5 decision tree classifiers. The performance of the classifiers was evaluated using 10-fold cross validation process in terms of sensitivity, specificity, accuracy and dice similarity coefficient. The method was effectively detected the lesion with accuracy of 89.15% in MLP classifier and of 95.02% in C4.5 classifier. This results proves that the spatial fuzzy c-means (SFCM) based segmentation with C4.5 decision tree classifier is an effective approach for automatic recognition of the liver cancer.

Pattern Recognition and Image Analysis. 2019;29(2):201-211
pages 201-211 views

Automatic Abstraction of Combinational Logic Circuit from Scanned Document Page Images

Datta R., Mandal S., Biswas S.

Аннотация

Information extraction from scanned document page images is an important issue in image analysis. The main objectives of this work are: vectorization of image of the digital logic-gate circuits as graph, and automatic generation of Boolean expression. We have employed a novel method for circuit component separation using morphological operators. Connecting wires (in the form of poly lines in the image) lead to adjacency matrix describing directed interconnection between logic gates. Logic gate symbols are recognized by support vector machine (SVM) based on the features obtained by deep convolutional neural network (DCNN). Finally, we exploit this abstract representation of digital logic circuit as a graph to determine the Boolean expression. The approach is tested on a dataset developed by us and the results are encouraging.

Pattern Recognition and Image Analysis. 2019;29(2):212-223
pages 212-223 views

Red Profile Moments for Hemorrhage Classification in Diabetic Retinal Fundus Images

Tasgaonkar M., Khambete M.

Аннотация

Reliable and accurate detection of hemorrhages is essential in screening of diabetic fundus retinal images. The hemorrhages are often irregular in shape. They may occur without any other signs of Diabetic Retinopathy. In this work, we captured the irregularity itself as a feature of hemorrhages. We define profile of segmented region and used its centralized moments as novel feature. The Support Vector Machine and its variants are explored for classification. The experiments show promising results with moments of red channel profile. The accuracy of 98.09% is achieved at lesion level and 100% at image level with RBF SVM. The approach with profile moments possibly can be further experimented further for other irregular object detection.

Pattern Recognition and Image Analysis. 2019;29(2):224-229
pages 224-229 views

A Substructure Segmentation Method of Left Heart Regions from Cardiac CT Images Using Local Mesh Descriptors, Context and Spatial Location Information

Zhang Y., Niu L.

Аннотация

The combination of image segmentation and 3D mesh segmentation is a novel methodology in segmenting complex cardiac substructures. When using a supervised learning, the use of context features and the spatial location features can help to distinguish some substructures while the use of local features are not sufficient.

Pattern Recognition and Image Analysis. 2019;29(2):230-239
pages 230-239 views

Representation, Processing, Analysis, and Understanding of Images

A Blur-SURE-Based Approach to Kernel Estimation for Motion Deblurring

Li J.

Аннотация

Blind motion deblurring is a highly challenging inverse problem in image processing and low-level computer vision. In this paper, we propose a novel approach to identify the parameters (blur length and orientation) of motion blur from an observed image. The kernel estimation is based on a novel criterion — the minimization of a blurred Stein’s unbiased risk estimate (blur-SURE): an unbiased estimate of a filtered mean squared error. By incorporating a simple Wiener filtering into the blur-SURE, the motion blur is estimated by minimizing this new objective functional with high accuracy. We then perform non-blind deconvolution using the high-quality SURE-LET algorithm with the estimated kernel. The results of synthetic and real experiments are quite competitive with other state-of-the-art algorithms under a wide range of degradation scenarios both numerically and visually.

Pattern Recognition and Image Analysis. 2019;29(2):240-251
pages 240-251 views

Software and Hardware for Pattern Recognition and Image Analysis

Recognition of Unimodality and Bimodality of a Two-Component Gaussian Mixture with Different Variances

Aprausheva N., Sorokin S.
Pattern Recognition and Image Analysis. 2019;29(2):252-257
pages 252-257 views

Building Recognition Using Gist Feature Based on Locality Sensitive Histograms of Oriented Gradients

Li B., Sun F., Zhang Y.

Аннотация

Locality sensitive histograms of oriented gradients based gist (LSHOG-gist) for building recognition is presented in this paper. Different from the traditional method which extracting orientation gist features by Gabor filters with only four angles, the proposed LSHOG-gist feature extraction method uses Locality sensitive histograms of oriented gradients of building images as orientation gist features. The LSHOG at each pixel is a multi-orientation histogram which is based on a whole building image. So, our LSHOG-gist is insensitive to noise such as non-uniform illumination or occlusion, and it has stronger texture description ability. Several experiments were conducted on the Sheffield Buildings Database, and satisfactory experimental results achieved, especially in the case of non-uniform illumination or occlusion.

Pattern Recognition and Image Analysis. 2019;29(2):258-267
pages 258-267 views

Applied Problems

A New Algorithm for Locating and Extracting Minutiae from Fingerprint Images

Al-Refoa A., Alshraideh M., Sharieh A.

Аннотация

Fingerprints are considered as the oldest and most widely used in the world for biometric identification. Every person has unique and permanent fingerprints. Most automatic fingerprint recognition systems are based on features formed from lines known as minutiae. Building a database of unique minutiae is very important in the security systems because it concerns the identification of the person committing a crime through the latent left in the crime scene. This research presents a new algorithm to give a minutia a unique value leading to accelerating the search process for a person. The algorithm splits the fingerprint image into four sections, then calculates the values for each minutia in each section and stores it in a database that is designed for this purpose. This research provides a great opportunity and additional options to fingerprint experts in order to solve many cases that are still undiscovered while searching for the latent in the database of minutiae. The results of testing this algorithm were very successful, very encouraging and helpful to fingerprint experts in their work.

Pattern Recognition and Image Analysis. 2019;29(2):268-279
pages 268-279 views

A Quasi-Isometric Embedding Algorithm

Dreisigmeyer D.

Аннотация

The Whitney embedding theorem gives an upper bound on the smallest embedding dimension of a manifold. If a data set lies on a manifold, a random projection into this reduced dimension will retain the manifold structure. Here we present an algorithm to find a projection that distorts the data as little as possible.

Pattern Recognition and Image Analysis. 2019;29(2):280-283
pages 280-283 views

Finite Impulse Response Filter with Square-Exponential Frequency Response

Fursov V., Bibikov S.

Аннотация

This article is devoted to resolving problems with synthesis of FIR-filter restoring distortions such as defocusing. We propose a new parametrical class of finite impulse response filters (FIR-filters) based on a model of the one-dimensional radially-symmetric frequency response. In the proposed synthesis method, the one-dimensional frequency response was composed of square and exponential functions. The two-dimensional filter’s impulse response (SE-filter) was constructed by sampling one-dimensional impulse responses for all directions. For filter parameters estimation, the iterative scheme was used. We considered two approaches to estimating the filter parameters: with training images and in the absence of training images. The important advantages of the proposed synthesis method are the possibility of high quality restoration with a minimum of prior information and the low amount of computing resources required. Given examples illustrates the possibility of the high-quality distortion correction. The proposed method provides higher quality restorations than optimal Wiener filter (from Open CV) due to a lack of distortion on the border of images.

Pattern Recognition and Image Analysis. 2019;29(2):284-295
pages 284-295 views

Mixed Finite Element Method for Nonlinear Diffusion Equation in Image Processing

Hjouji A., El-Mekkaoui J., Jourhmane M.

Аннотация

In this paper we present a robust approach for dealing with numerical solutions of partial differential equations (PDEs) arising in image processing and computer vision. In this context, we introduce the nonlinear Perona-Malik diffusion equation and its improvement by Catté et al. After a semi-implicit approximation in scale we introduce a new variable and we show that the weak formulation of the problem obtained has a unique solution in a well-chosen space. We use the discretization by mixed finite element method (MFEM) based on Galerkin technique and Taylor-hode elements P2P1 and Q2Q1. To validate our approach some numerical results are given.

Pattern Recognition and Image Analysis. 2019;29(2):296-308
pages 296-308 views

Effect on the Performance of a Support Vector Machine Based Machine Vision System with Dry and Wet Ore Sample Images in Classification and Grade Prediction

Patel A., Chatterjee S., Gorai A.

Аннотация

The aim of the present study is to analysing the effect of water absorption on iron ore samples in the performances of SVM-based machine vision system. Two types of SVM-based machine vision system (classification and regression) were designed and developed, and performances were compared with dry and wet ore sample images. The images of the ore samples were captured in both the conditions (wet and dry) to examine the proposed model performance. A total of 280 image features were extracted and optimised using sequential forward floating selection (SFFS) algorithm for model development. The iron ore samples were collected from an Indian iron ore mine (Guamine), and image capturing system was fabricated in the laboratory for executing the proposed study. The results indicated that a different set of optimised features obtained for dry and wet sample images in both the models (classification and regression). Furthermore, the performance of both the models with dry sample images was found to be relatively better than the wet sample images.

Pattern Recognition and Image Analysis. 2019;29(2):309-324
pages 309-324 views

Handwritten Gujarati Character Recognition Using Structural Decomposition Technique

Sharma A., Thakkar P., Adhyaru D., Zaveri T.

Аннотация

Handwritten character recognition is the active area of research. Development of Optical Character Recognition (OCR) system for Indian script like Gujarati is still in infancy and hence, there exists many unaddressed challenging problems for research community in this domain. The paper proposes three novel features to represent handwritten Gujarati characters. These features include features extracted based on structural decomposition, zone pattern matching and normalized cross correlation. Methods based on Support Vector Machine (SVM) and Naive Bayes (NB) classifiers have been exercised for the classification of Gujarati characters represented using proposed features. Experiments have been carried out on a dataset of 20500 handwritten Gujarati characters. Experimental results showed significant improvement over state-of-the-art when classifiers were learnt using structural decomposition based features.

Pattern Recognition and Image Analysis. 2019;29(2):325-338
pages 325-338 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».