Mixed Finite Element Method for Nonlinear Diffusion Equation in Image Processing
- Авторы: Hjouji A.1, El-Mekkaoui J.2, Jourhmane M.1
-
Учреждения:
- Faculty of Sciences and Technology
- Polydisciplinary Faculty
- Выпуск: Том 29, № 2 (2019)
- Страницы: 296-308
- Раздел: Applied Problems
- URL: https://journals.rcsi.science/1054-6618/article/view/195592
- DOI: https://doi.org/10.1134/S1054661819020020
- ID: 195592
Цитировать
Аннотация
In this paper we present a robust approach for dealing with numerical solutions of partial differential equations (PDEs) arising in image processing and computer vision. In this context, we introduce the nonlinear Perona-Malik diffusion equation and its improvement by Catté et al. After a semi-implicit approximation in scale we introduce a new variable and we show that the weak formulation of the problem obtained has a unique solution in a well-chosen space. We use the discretization by mixed finite element method (MFEM) based on Galerkin technique and Taylor-hode elements P2–P1 and Q2–Q1. To validate our approach some numerical results are given.
Об авторах
Amal Hjouji
Faculty of Sciences and Technology
Автор, ответственный за переписку.
Email: hjouji.amal@gmail.com
Марокко, Beni Mellal
Jaouad El-Mekkaoui
Polydisciplinary Faculty
Автор, ответственный за переписку.
Email: jawad.mekkaou@gmail.com
Марокко, Beni Mellal
Mostafa Jourhmane
Faculty of Sciences and Technology
Email: jawad.mekkaou@gmail.com
Марокко, Beni Mellal
Дополнительные файлы
