Adaptivity of conditional random field based outdoor point cloud classification
- Autores: Lang D.1, Friedmann S.1, Paulus D.1
-
Afiliações:
- Universitat Koblenz-Landau
- Edição: Volume 26, Nº 2 (2016)
- Páginas: 309-315
- Seção: Representation, Processing, Analysis and Understanding of Images
- URL: https://journals.rcsi.science/1054-6618/article/view/194699
- DOI: https://doi.org/10.1134/S1054661816020085
- ID: 194699
Citar
Resumo
In this paper we present how adaptable learned models of graphical models are and how they can be used for classification tasks of 3D laser point clouds with different distributions and density. In order to model the contextual information we use a pair-wise conditional random field and an adaptive graph down-sampling method based on voxel grids. As feature we apply the rotation invariant histogram-of-oriented-residuals operator to describe the local point cloud distribution. We validate the approach with data collected from different laser range finders with varying point cloud distribution and density. Our experiments imply, that conditional random field models learned from one dataset can be applied to another dataset without a significant loss of precision.
Palavras-chave
Sobre autores
D. Lang
Universitat Koblenz-Landau
Autor responsável pela correspondência
Email: dagmarlang@uni-koblenz.de
Rússia, Universitatsstrafie 1, Koblenz, 56070
S. Friedmann
Universitat Koblenz-Landau
Email: dagmarlang@uni-koblenz.de
Rússia, Universitatsstrafie 1, Koblenz, 56070
D. Paulus
Universitat Koblenz-Landau
Email: dagmarlang@uni-koblenz.de
Rússia, Universitatsstrafie 1, Koblenz, 56070
Arquivos suplementares
