Adaptivity of conditional random field based outdoor point cloud classification


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper we present how adaptable learned models of graphical models are and how they can be used for classification tasks of 3D laser point clouds with different distributions and density. In order to model the contextual information we use a pair-wise conditional random field and an adaptive graph down-sampling method based on voxel grids. As feature we apply the rotation invariant histogram-of-oriented-residuals operator to describe the local point cloud distribution. We validate the approach with data collected from different laser range finders with varying point cloud distribution and density. Our experiments imply, that conditional random field models learned from one dataset can be applied to another dataset without a significant loss of precision.

Sobre autores

D. Lang

Universitat Koblenz-Landau

Autor responsável pela correspondência
Email: dagmarlang@uni-koblenz.de
Rússia, Universitatsstrafie 1, Koblenz, 56070

S. Friedmann

Universitat Koblenz-Landau

Email: dagmarlang@uni-koblenz.de
Rússia, Universitatsstrafie 1, Koblenz, 56070

D. Paulus

Universitat Koblenz-Landau

Email: dagmarlang@uni-koblenz.de
Rússia, Universitatsstrafie 1, Koblenz, 56070

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016