Adaptivity of conditional random field based outdoor point cloud classification

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper we present how adaptable learned models of graphical models are and how they can be used for classification tasks of 3D laser point clouds with different distributions and density. In order to model the contextual information we use a pair-wise conditional random field and an adaptive graph down-sampling method based on voxel grids. As feature we apply the rotation invariant histogram-of-oriented-residuals operator to describe the local point cloud distribution. We validate the approach with data collected from different laser range finders with varying point cloud distribution and density. Our experiments imply, that conditional random field models learned from one dataset can be applied to another dataset without a significant loss of precision.

作者简介

D. Lang

Universitat Koblenz-Landau

编辑信件的主要联系方式.
Email: dagmarlang@uni-koblenz.de
俄罗斯联邦, Universitatsstrafie 1, Koblenz, 56070

S. Friedmann

Universitat Koblenz-Landau

Email: dagmarlang@uni-koblenz.de
俄罗斯联邦, Universitatsstrafie 1, Koblenz, 56070

D. Paulus

Universitat Koblenz-Landau

Email: dagmarlang@uni-koblenz.de
俄罗斯联邦, Universitatsstrafie 1, Koblenz, 56070

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016