Adaptivity of conditional random field based outdoor point cloud classification


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper we present how adaptable learned models of graphical models are and how they can be used for classification tasks of 3D laser point clouds with different distributions and density. In order to model the contextual information we use a pair-wise conditional random field and an adaptive graph down-sampling method based on voxel grids. As feature we apply the rotation invariant histogram-of-oriented-residuals operator to describe the local point cloud distribution. We validate the approach with data collected from different laser range finders with varying point cloud distribution and density. Our experiments imply, that conditional random field models learned from one dataset can be applied to another dataset without a significant loss of precision.

Авторлар туралы

D. Lang

Universitat Koblenz-Landau

Хат алмасуға жауапты Автор.
Email: dagmarlang@uni-koblenz.de
Ресей, Universitatsstrafie 1, Koblenz, 56070

S. Friedmann

Universitat Koblenz-Landau

Email: dagmarlang@uni-koblenz.de
Ресей, Universitatsstrafie 1, Koblenz, 56070

D. Paulus

Universitat Koblenz-Landau

Email: dagmarlang@uni-koblenz.de
Ресей, Universitatsstrafie 1, Koblenz, 56070

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016