Use of Special Devices for X-Ray Interferometric Investigation of Structural Imperfections in Single Crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A universal device for X-ray interferometric study of structural defects in single crystals has been designed, manufactured and tested. The device can serve both for scratching the surface of the interferometer crystal blocks and for bending it. A technology for generating dislocation in an interferometer block is also proposed. It has been experimentally proved that the moiré topographic patterns obtained using a double X-ray interferometer depend on the orientation of the reflection planes relative to the defect (dislocation). It is shown that multiple interferometers make it possible to simultaneously observe images of various structural imperfections. The results obtained make it possible to judge the spatial orientation of defects and the distribution of strain fields caused by these defects, i.e., strain fields can be visualized as X-ray moiré patterns. The results obtained in the work can form the basis for solving the inverse task, namely, the restoration of mechanical tension fields in the interferometer crystal blocks using the decoding of moiré patterns.

Sobre autores

H. Drmeyan

Institute of Applied Problems of Physics of the National Academy of Science of the Republic of Armenia; Shirak State University after M. Nalbandyan

Autor responsável pela correspondência
Email: drm-henrik@mail.ru
Republic of Armenia, 0014, Yerevan; Republic of Armenia, 3126, Shirak Marz, Gyumri

M. Vasilyan

Institute of Applied Problems of Physics of the National Academy of Science of the Republic of Armenia

Email: drm-henrik@mail.ru
Republic of Armenia, 0014, Yerevan

Bibliografia

  1. Lang A.R., Miuscov V.F. // Appl. Phys. Let. 1965. V. 7. Iss. 8. P. 214. https://doi.org/10.1063/1.1754384
  2. Lider V.V. // Usp. Phys. Sciences. 2014. V. 57. Iss. 11. P. 1099. https://doi.org/10.3367/UFNe.0184.201411e.1217
  3. Bonse U., Hart M. // Z. Phys. 1966. B. 190. № 4. S. 455. https://doi.org/10.1007/BF01327264
  4. Hart M. // Brit. J. Appl. Phys. (J. Phys. D). 1968. V. 1. Iss. 11. P. 1405. https://DOI.org/10.1088/0022–3727/1/11/303
  5. Drmeyan H.R. // Acta Crystallogr. A. 2004. V. 60. P. 521. https://doi.org/10.1107/S0108767304016502
  6. Hart M. // Phylos. Mag. (Abingdon) 1972. V. 26. Iss. 4. P. 821. https://doi.org/10.1080/14786437208226958
  7. Bonse U., Creff W., Materlik G. // Rev. Phys. Appl. (Paris). 1976. V. 11. № 1. P. 83. https://doi.org/10.1051/rphysap:0197600110108300
  8. Fezzaa K., Lee W-K. J. // J. Appl. Crystallogr. 2001. V. 34. Iss. 2. P. 166. https://doi.org/10.1107/S0021889801002072
  9. Drmeyan H.R., Mkhitaryan S.A. // Explor. Mater. Sci. Res. 2022. V. 3. Iss. 2. P. 124. https://doi.org/10.47204/EMSR.3.2.2022.124-129
  10. Azaroff L.V., Kaplow R., Kato N., Weiss R.J., Wilson A.J.C., Young R.A. // International Series in Pure and Applied Physics (1st Edition), N.Y.: McGraw–Hill Inc., 1974. P. 736.
  11. Ohler M., Hartwig J. // Acta Crystallogr. A. 1999. V. 55. P. 413. https://doi.org/10.1107/s0108767398010514
  12. Authier A. Dynamical Theory of X-ray Diffraction. Oxford: Oxford Univ. Press, 2001. 680 p. https://cds.cern.ch/record/1447864/files/9780198528920_ TOC.pdf
  13. Creagh D.C., Hart M. // Phys. Status Sol. 1970. V. 37. Iss. 2. P. 753. https://doi.org/10.1002/pssb.19700370226
  14. Christiansen G., Gerward L., Andersen L.A. // J. Appl. Crystallogr. 1971. V. 4. Iss. 5. P. 370. https://doi.org/10.1107/S0021889871007222
  15. Yoneyama A., Momose A., Seya E., Hirano K., Takeda T., Itaia Y. // Rev. Sci. Instrum. 1999. V. 70. V. 12. P. 4582. https://doi.org/10.1063/1.1150116
  16. Drmeyan H.R. // J. Surf. Invest: X-Ray, Synchrotron Neutron Tech. 2015. V. 9. Iss. 2. P. 336. https://doi.org/10.1134/S1027451015010292
  17. Eyramjyan T.H., Mesropyan M.H., Mnatsakanyan T.S., Balyan M.K. // Acta Crystallogr. A. 2020. V. 76. P. 390. https://doi.org/10.1107/S2053273320002314
  18. Aboyan A.O., Khzardzhyan A.A., Bezirganyan P.H., Bezirganyan S.E. // Phys. Status Sol. A. 1990. V. 118. Iss. 1. P. 11. https://doi.org/10.1002/pssa.2211180102
  19. Gerward L. // Z. Physik. 1973. B. 259. S. 313. https://doi.org/10.1007/BF01395937
  20. Chen W.M., McNally P.J., Shvyd’ko Y.V., Tuomi T., Danilewsky A.N., Lerche M. // J. Cryst. Growth. 2003. V. 252. Iss. 1–3. P. 113.
  21. Yoshimura J. // Acta Crystallogr. A. 2015. V. 71. P. 368. https://doi.org/10.1107/S2053273315004970
  22. Drmeyan H.R. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Techn. 2020. V. 14. Iss. 6. P. 1270. https://doi.org/10.1134/S1027451020060282
  23. Blagov A.E., Kocharyan V.R., Eliovich Ya.A., Targonsky A.V., Movsisyan A.E., Korzhov V.A., Shahverdyan A.V., Mkrtchyan A.H., Kovalchuk M.V. // J. Contemporary Phys. (Armenian Academy of Sciences). 2022. V. 57. Iss. 2. P. 192. https://doi.org/10.3103/S1068337222020086
  24. X-Ray Technology. Handbook. Book 2 / Ed. Klyuev V.V. M.: Mashinostroenie, 1992. 368 p. https://www.studmed.ru/klyuev–v–v–red–rentgenotehnika–spravochnik–v–2–h–kn–kn–2_01441d20f04.html

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (360KB)
3.

Baixar (222KB)
4.

Baixar (386KB)
5.

Baixar (204KB)
6.

Baixar (291KB)
7.

Baixar (747KB)

Declaração de direitos autorais © Г.Р. Дрмеян, М.С. Василян, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies