Measurements of Electrodynamics Parameters of a Cylindrical RF-Cavity with Stainless Steel Samples

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Stainless steel with galvanic copper coating is often used as a material for ion linear accelerators RF cavities. However, for the cavities with complex inner surfaces obtaining a uniform copper coating becomes technologically challenging. The solution might be found in manufacturing the cavity without copper coating at all, though in that case the amount of power losses in the cavity should be carefully estimated. To make such estimations the experiment was carried out, where the electrodynamic properties of a test cavity with two coupling loops were measured with the stainless steel samples placed inside it. The results of this experiment showed sufficient difference between the simulated and measured Q-factor values for the same 12Х18Н10Т sample steel grade. Thus, an assumption was made the magnetic properties of austenitic steel samples could have changed during the manufacturing process, so the magnetic permeability values for the steel samples were estimated.

Авторлар туралы

M. Lalayan

National Research Nuclear University “MEPhI”

Email: SMPolozov@mephi.ru
Russia, 115409, Moscow

Yu. Lozeev

National Research Nuclear University “MEPhI”

Хат алмасуға жауапты Автор.
Email: YYLozeev@mephi.ru
Russia, 115409, Moscow

A. Makarov

National Research Nuclear University “MEPhI”

Email: SMPolozov@mephi.ru
Russia, 115409, Moscow

S. Polozov

National Research Nuclear University “MEPhI”

Хат алмасуға жауапты Автор.
Email: SMPolozov@mephi.ru
Russia, 115409, Moscow

Әдебиет тізімі

  1. Собенин Н.П., Милованов О.С. Техника сверхвысоких частот. М.: Энергоатомиздат, 2007. 545 с.
  2. А. с. 265 312 (СССР). Линейный ускоритель ионов / ОИПТЗ. Владимирский В.В., Капчинский И.М., Тепляков В.А. // Б.И. 1970. № 10. С. 75.
  3. Koshelev V. et al. // Proc. of LINAC2016, East Lansing, MI, USA, 2016. P. 575.
  4. Butenko A.V., Bazanov A.M., Donets D.E. et al. Commissioning of New Light Ion RFQ Linac and First Nuclotron Run with New Injector // Proc. of RuPAC2016. St. Petersburg, Russia, 2016. P. 153. https://www.doi.org/10.18429/JACoW-RuPAC2016-FRCAMH02
  5. Kuzmichev V.G., Kozlov A.V., Kulevoypresenter T. et al. The RF Power System for RFQ-injector of Linac-20 // Proc. of RuPAC2016. St. Petersburg. 2016. P. 297. https://www.doi.org/10.18429/JACoW-RuPAC2016-TUPSA038
  6. Hasegawa K., Mizumoto M., Ito N. et al. // J. Nucl. Sci. Technol. 1997. V. 34. № 7. P. 622. https://www.doi.org/10.1080/18811248.1997.9733720
  7. Lu L., Ma W., Zhai Y.H. et al. High Power Test of the LEAF-RFQ // Proc. of LINAC2018. Beijing, 2018. P. 808. https://www.doi.org/10.18429/JACoW-LINAC2018-THPO052
  8. Belyaev O.K., Ershov O.V., Maltsev I.G. et al. IHEP Experience on Creation and Operation of RFQS // Proc. of LINAC2000. Monterey, 2000. P. 1. https://www.doi.org/10.48550/arXiv.physics/0008020
  9. Bartz U., Schempp A. A CW RFQ prototype. // Proc. of IPAC2011. San Sebatian. Spain, 2011. P. 2559.
  10. Morishita T., Kondo Y., Hasegawa K. et al. Vane Machining by the Ball-end-Mill for the New RFQ in the J-Parc LINAC // Proc. of LINAC2010. Tsukuba. Japan, 2010. P. 521.
  11. Ostroumov P.N., Barcikowski A., Clifft B. et al. High Power Test of a 57-MHz CW RFQ // Proc. of LINAC2006. Knoxville, Tennesse USA, 2006. P. 767.
  12. Koubek B., Grudiev A., Timmins M. // Phys. Rev. Accelerators Beams. 2017. V. 20. № 8. P. 1. https://www.doi.org/10.1103/PhysRevAccelBeams. 20.080102
  13. Zhao B., Chen Sh., Zhu T. et al. // Nucl. Engineer. Technol. 2019. V. 51. № 2. P. 556. https://www.doi.org/10.1016/j.net.2018.10.003
  14. Снежной Г.В., Мищенко В.Г., Снежной В.Л. // Новые материалы и технологии в металлургии и машиностроении. 2014. № 2. С. 9.
  15. Cao B., Iwamoto T., Bhattacharjee P.P. // Mater. Sci. Engineer. A. 2020. V. 774 P. 11. https://www.doi.org/10.1016/j.msea.2020.138927
  16. Mumtaz K. et al. // J. Mater. Sci. 2004. V. 39 P. 85. https://www.doi.org/10.1023/B:JMSC.0000007731. 38154.e1
  17. Manjanna J. et al. // J. Mater. Sci. 2008. V. 43. P. 2659. https://www.doi.org/10.1007/s10853-008-2494-4
  18. Lebedev A.A., Kosarchuk V.V. // Int. J. Plasticity. 2000. V. 16. № 7–8. P. 749. https://www.doi.org/10.1016/S0749-6419(99)00085-6
  19. Rocha M., Oliveira C. // Mater. Sci. Engineer. A. 2009. V. 517. № 1–2. P. 281. https://www.doi.org/10.1016/j.msea.2009.04.004
  20. Das A., Tarafder S. // Int. J. Plasticity. 2009. V. 25. № 11. P. 2222. https://www.doi.org/10.1016/j.ijplas.2009.03.003

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (445KB)
3.

Жүктеу (432KB)

© М.В. Лалаян, Ю.Ю. Лозеев, А.И. Макаров, С.М. Полозов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>