Исследование электродинамических характеристик цилиндрического высокочастотного резонатора, возмущенного образцами нержавеющей стали

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

При создании ускорителей ионов, работающих в импульсном режиме, в качестве материала высокочастотных резонаторов используют аустенитную нержавеющую сталь с медным гальваническим покрытием. Для резонаторов с элементами сложной формы нанесение медного покрытия является сложной технологической задачей, что порождает интерес изготовить стальной резонатор без медного покрытия. Однако, в таком случае важно аккуратно оценить рост высокочастотных потерь в структуре по сравнению с расчетными величинами, что неоднократно наблюдалось экспериментально. Для проведения такой оценки был собран макет на основе цилиндрического высокочастотного резонатора с двумя устройствами связи. На макете были исследованы электродинамические характеристики высокочастотного резонатора, в центр которого помещались исследуемые образцы стали. Полученные результаты показали значительное расхождение между расчетными и экспериментальными значениями собственной добротности резонатора. В численных расчетах использовались стандартные параметры для стали марки 12Х18Н10Т. Также для образцов были оценены значения относительной магнитной проницаемости µ, исходя из предположения о том, что магнитные свойства аустенитной стали на поверхности могли измениться при обработке.

Об авторах

М. В. Лалаян

Национальный исследовательский ядерный университет “МИФИ”

Email: SMPolozov@mephi.ru
Россия, 115409, Москва

Ю. Ю. Лозеев

Национальный исследовательский ядерный университет “МИФИ”

Автор, ответственный за переписку.
Email: YYLozeev@mephi.ru
Россия, 115409, Москва

А. И. Макаров

Национальный исследовательский ядерный университет “МИФИ”

Email: SMPolozov@mephi.ru
Россия, 115409, Москва

С. М. Полозов

Национальный исследовательский ядерный университет “МИФИ”

Автор, ответственный за переписку.
Email: SMPolozov@mephi.ru
Россия, 115409, Москва

Список литературы

  1. Собенин Н.П., Милованов О.С. Техника сверхвысоких частот. М.: Энергоатомиздат, 2007. 545 с.
  2. А. с. 265 312 (СССР). Линейный ускоритель ионов / ОИПТЗ. Владимирский В.В., Капчинский И.М., Тепляков В.А. // Б.И. 1970. № 10. С. 75.
  3. Koshelev V. et al. // Proc. of LINAC2016, East Lansing, MI, USA, 2016. P. 575.
  4. Butenko A.V., Bazanov A.M., Donets D.E. et al. Commissioning of New Light Ion RFQ Linac and First Nuclotron Run with New Injector // Proc. of RuPAC2016. St. Petersburg, Russia, 2016. P. 153. https://www.doi.org/10.18429/JACoW-RuPAC2016-FRCAMH02
  5. Kuzmichev V.G., Kozlov A.V., Kulevoypresenter T. et al. The RF Power System for RFQ-injector of Linac-20 // Proc. of RuPAC2016. St. Petersburg. 2016. P. 297. https://www.doi.org/10.18429/JACoW-RuPAC2016-TUPSA038
  6. Hasegawa K., Mizumoto M., Ito N. et al. // J. Nucl. Sci. Technol. 1997. V. 34. № 7. P. 622. https://www.doi.org/10.1080/18811248.1997.9733720
  7. Lu L., Ma W., Zhai Y.H. et al. High Power Test of the LEAF-RFQ // Proc. of LINAC2018. Beijing, 2018. P. 808. https://www.doi.org/10.18429/JACoW-LINAC2018-THPO052
  8. Belyaev O.K., Ershov O.V., Maltsev I.G. et al. IHEP Experience on Creation and Operation of RFQS // Proc. of LINAC2000. Monterey, 2000. P. 1. https://www.doi.org/10.48550/arXiv.physics/0008020
  9. Bartz U., Schempp A. A CW RFQ prototype. // Proc. of IPAC2011. San Sebatian. Spain, 2011. P. 2559.
  10. Morishita T., Kondo Y., Hasegawa K. et al. Vane Machining by the Ball-end-Mill for the New RFQ in the J-Parc LINAC // Proc. of LINAC2010. Tsukuba. Japan, 2010. P. 521.
  11. Ostroumov P.N., Barcikowski A., Clifft B. et al. High Power Test of a 57-MHz CW RFQ // Proc. of LINAC2006. Knoxville, Tennesse USA, 2006. P. 767.
  12. Koubek B., Grudiev A., Timmins M. // Phys. Rev. Accelerators Beams. 2017. V. 20. № 8. P. 1. https://www.doi.org/10.1103/PhysRevAccelBeams. 20.080102
  13. Zhao B., Chen Sh., Zhu T. et al. // Nucl. Engineer. Technol. 2019. V. 51. № 2. P. 556. https://www.doi.org/10.1016/j.net.2018.10.003
  14. Снежной Г.В., Мищенко В.Г., Снежной В.Л. // Новые материалы и технологии в металлургии и машиностроении. 2014. № 2. С. 9.
  15. Cao B., Iwamoto T., Bhattacharjee P.P. // Mater. Sci. Engineer. A. 2020. V. 774 P. 11. https://www.doi.org/10.1016/j.msea.2020.138927
  16. Mumtaz K. et al. // J. Mater. Sci. 2004. V. 39 P. 85. https://www.doi.org/10.1023/B:JMSC.0000007731. 38154.e1
  17. Manjanna J. et al. // J. Mater. Sci. 2008. V. 43. P. 2659. https://www.doi.org/10.1007/s10853-008-2494-4
  18. Lebedev A.A., Kosarchuk V.V. // Int. J. Plasticity. 2000. V. 16. № 7–8. P. 749. https://www.doi.org/10.1016/S0749-6419(99)00085-6
  19. Rocha M., Oliveira C. // Mater. Sci. Engineer. A. 2009. V. 517. № 1–2. P. 281. https://www.doi.org/10.1016/j.msea.2009.04.004
  20. Das A., Tarafder S. // Int. J. Plasticity. 2009. V. 25. № 11. P. 2222. https://www.doi.org/10.1016/j.ijplas.2009.03.003

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (445KB)
3.

Скачать (432KB)

© М.В. Лалаян, Ю.Ю. Лозеев, А.И. Макаров, С.М. Полозов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах