Measurements of Electrodynamics Parameters of a Cylindrical RF-Cavity with Stainless Steel Samples

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Stainless steel with galvanic copper coating is often used as a material for ion linear accelerators RF cavities. However, for the cavities with complex inner surfaces obtaining a uniform copper coating becomes technologically challenging. The solution might be found in manufacturing the cavity without copper coating at all, though in that case the amount of power losses in the cavity should be carefully estimated. To make such estimations the experiment was carried out, where the electrodynamic properties of a test cavity with two coupling loops were measured with the stainless steel samples placed inside it. The results of this experiment showed sufficient difference between the simulated and measured Q-factor values for the same 12Х18Н10Т sample steel grade. Thus, an assumption was made the magnetic properties of austenitic steel samples could have changed during the manufacturing process, so the magnetic permeability values for the steel samples were estimated.

Sobre autores

M. Lalayan

National Research Nuclear University “MEPhI”

Email: SMPolozov@mephi.ru
Russia, 115409, Moscow

Yu. Lozeev

National Research Nuclear University “MEPhI”

Autor responsável pela correspondência
Email: YYLozeev@mephi.ru
Russia, 115409, Moscow

A. Makarov

National Research Nuclear University “MEPhI”

Email: SMPolozov@mephi.ru
Russia, 115409, Moscow

S. Polozov

National Research Nuclear University “MEPhI”

Autor responsável pela correspondência
Email: SMPolozov@mephi.ru
Russia, 115409, Moscow

Bibliografia

  1. Собенин Н.П., Милованов О.С. Техника сверхвысоких частот. М.: Энергоатомиздат, 2007. 545 с.
  2. А. с. 265 312 (СССР). Линейный ускоритель ионов / ОИПТЗ. Владимирский В.В., Капчинский И.М., Тепляков В.А. // Б.И. 1970. № 10. С. 75.
  3. Koshelev V. et al. // Proc. of LINAC2016, East Lansing, MI, USA, 2016. P. 575.
  4. Butenko A.V., Bazanov A.M., Donets D.E. et al. Commissioning of New Light Ion RFQ Linac and First Nuclotron Run with New Injector // Proc. of RuPAC2016. St. Petersburg, Russia, 2016. P. 153. https://www.doi.org/10.18429/JACoW-RuPAC2016-FRCAMH02
  5. Kuzmichev V.G., Kozlov A.V., Kulevoypresenter T. et al. The RF Power System for RFQ-injector of Linac-20 // Proc. of RuPAC2016. St. Petersburg. 2016. P. 297. https://www.doi.org/10.18429/JACoW-RuPAC2016-TUPSA038
  6. Hasegawa K., Mizumoto M., Ito N. et al. // J. Nucl. Sci. Technol. 1997. V. 34. № 7. P. 622. https://www.doi.org/10.1080/18811248.1997.9733720
  7. Lu L., Ma W., Zhai Y.H. et al. High Power Test of the LEAF-RFQ // Proc. of LINAC2018. Beijing, 2018. P. 808. https://www.doi.org/10.18429/JACoW-LINAC2018-THPO052
  8. Belyaev O.K., Ershov O.V., Maltsev I.G. et al. IHEP Experience on Creation and Operation of RFQS // Proc. of LINAC2000. Monterey, 2000. P. 1. https://www.doi.org/10.48550/arXiv.physics/0008020
  9. Bartz U., Schempp A. A CW RFQ prototype. // Proc. of IPAC2011. San Sebatian. Spain, 2011. P. 2559.
  10. Morishita T., Kondo Y., Hasegawa K. et al. Vane Machining by the Ball-end-Mill for the New RFQ in the J-Parc LINAC // Proc. of LINAC2010. Tsukuba. Japan, 2010. P. 521.
  11. Ostroumov P.N., Barcikowski A., Clifft B. et al. High Power Test of a 57-MHz CW RFQ // Proc. of LINAC2006. Knoxville, Tennesse USA, 2006. P. 767.
  12. Koubek B., Grudiev A., Timmins M. // Phys. Rev. Accelerators Beams. 2017. V. 20. № 8. P. 1. https://www.doi.org/10.1103/PhysRevAccelBeams. 20.080102
  13. Zhao B., Chen Sh., Zhu T. et al. // Nucl. Engineer. Technol. 2019. V. 51. № 2. P. 556. https://www.doi.org/10.1016/j.net.2018.10.003
  14. Снежной Г.В., Мищенко В.Г., Снежной В.Л. // Новые материалы и технологии в металлургии и машиностроении. 2014. № 2. С. 9.
  15. Cao B., Iwamoto T., Bhattacharjee P.P. // Mater. Sci. Engineer. A. 2020. V. 774 P. 11. https://www.doi.org/10.1016/j.msea.2020.138927
  16. Mumtaz K. et al. // J. Mater. Sci. 2004. V. 39 P. 85. https://www.doi.org/10.1023/B:JMSC.0000007731. 38154.e1
  17. Manjanna J. et al. // J. Mater. Sci. 2008. V. 43. P. 2659. https://www.doi.org/10.1007/s10853-008-2494-4
  18. Lebedev A.A., Kosarchuk V.V. // Int. J. Plasticity. 2000. V. 16. № 7–8. P. 749. https://www.doi.org/10.1016/S0749-6419(99)00085-6
  19. Rocha M., Oliveira C. // Mater. Sci. Engineer. A. 2009. V. 517. № 1–2. P. 281. https://www.doi.org/10.1016/j.msea.2009.04.004
  20. Das A., Tarafder S. // Int. J. Plasticity. 2009. V. 25. № 11. P. 2222. https://www.doi.org/10.1016/j.ijplas.2009.03.003

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (445KB)
3.

Baixar (432KB)

Declaração de direitos autorais © М.В. Лалаян, Ю.Ю. Лозеев, А.И. Макаров, С.М. Полозов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies