Study of SiO2 Films Obtained by PECVD and Doped with Zn

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of studying silicon oxide films obtained by plasma enhanced chemical vapor deposition on Si substrates are presented. They were implanted with 64Zn+ ions with an energy of 50 keV (dose 7 × 1016 cm-2) and then annealed in oxygen atmosphere at elevated temperatures. It has been found that after implantation, zinc is distributed in the SiO2 film according to the normal law with a maximum of about 40 nm. After implantation, zinc is in the silicon oxide film both in the metallic phase (closer to the film surface) and in the oxidized state (in the film depth). After annealing up to 800°C, the zinc profile shifts into the film depth; in this case, the zinc is in the film only in the oxidized state. At high temperatures (over 800°C), the zinc profile shifts toward the film surface.

作者简介

V. Privezentsev

National Research Centre "Kurchatov Institute" - Scientific Research Institute for System Analysis

Email: v.privezentsev@mail.ru
Moscow, 117218 Russia

A. Firsov

National Research Centre "Kurchatov Institute" - Scientific Research Institute for System Analysis

Email: v.privezentsev@mail.ru
Moscow, 117218 Russia

V. Kulikauskas

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: v.privezentsev@mail.ru
Moscow, 119991 Russia

V. Zatekin

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: v.privezentsev@mail.ru
Moscow, 119991 Russia

E. Kirilenko

Institute of Nanotechnology of Microelectronics RAS

Email: v.privezentsev@mail.ru
Moscow, 119991 Russia

A. Goryachev

Institute of Nanotechnology of Microelectronics RAS

Email: v.privezentsev@mail.ru
Moscow, 119991 Russia

参考

  1. Старостин В.В. Материалы и методы нанотехнологий. М.: БИНОМ, 2015. 434 с.
  2. Litton С.W., Collins T.C., Reynolds D.S. Zinc Oxide Material for Electronic and Optoelectronic Device Application. Chichester: Wiley, 2011.
  3. Neshataeva E., Kümmell T., Bacher G., Ebbers A. // Appl. Phys. Lett. 2009. V. 94. P. 091115. https://doi.org/10.1063/1.3093675
  4. Chu S., Olmedo M., Yang Zh. et al. // Appl. Phys. Lett. 2008. V. 93. P. 181106. https://doi.org/10.1063/1.3012579
  5. Smestad G.P., Gratzel M. // J. Chem. Educ. 1998. V. 75. P. 752. https: j.chem.wisc.edu.
  6. Li C., Yang Y., Sun X.W., Lei W., Zhang X.B., Wang B.P., Wang J.X., Tay B.K., Ye J.D., Lo G.Q., Kwong D.L. // Nanotechnology. 2007. V. 18. P. 135604. https://doi.org/10.1088/0957-4484/18/13/135604
  7. Mehonic A., Shluger A.L., Gao D., Valov I., Miranda E., Ielmini D., Bricalli A., Ambrosi E., Li C., Yang J.J., Xia Q., Kenyon A.J. // Adv. Mater. 2018. V. 30. 43. P. 1801187. https://doi.org/10.1002/adma.201801187
  8. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., ohd Bakhori S.K., Hasan H., Mohamad D. // Nano-Micro Lett. 2015. V. 7. P. 219. https://doi.org/10.1007/s40820-015-0040-x
  9. Inbasekaran S., Senthil R., Ramamurthy G., Sastry T.P. // Intern. J. Innov. Res. Sci. Eng. Technol. 2014. V. 3. P. 8601. www.ijirset.com.
  10. Straumal B.B., Mazilkin A.A., Protasova S.G., Myatiev A.A., Straumal P.B., Schütz G., van Aken P.A., Goering E., Baretzky B. // Phys. Rev. B. 2009. V. 79. P. 205206. https://doi.org/10.1103/PhysRevB.79.205206
  11. Ilyas N., Li C., Wang J., Jiang X., Fu H., Liu F., Gu D., Jiang Y., Li W. // J. Phys. Chem. Lett. 2022. V. 13 (3). P. 884. https://doi.org/10.1021/acs.jpclett.1c03912
  12. Qin F., Zhang Y., Guo Z. et al. // Mater. Adv. 2024. V. 5. P. 4209. https://doi.org/10.1039/d3ma01142
  13. Okulich E.V., Okulich V.I., Tetelbaum D.I., Mikhaylov A.N. // Mater. Lett. 2022. V. 310. P. 131494. https://doi.org/10.1016/j.matlet.2021.131494
  14. Mehonic A., Gerard T., Kenyon A.J. // Appl. Phys. Lett. 2017. V. 111. P. 233502. https://doi.org/10.1063/1.5009069
  15. Chang K.C., Tsai T.M., Chang T.C., Wu H.H., Chen J.H., Syu Y.E., Chang G.W., Chu T.J., Liu G.R., Su Y.T., Chen M.C., Pan J.H., Chen J.Y., Tung C.W., Huang H.C., Tai Y.H., Gan D.S., Sze S.M. // IEEE Eelecron. Dev. Lett. 2013. V. 34 (9). P. 399. https://doi.org/10.1109/LED.2013.2241725
  16. Privezentsev V.V., Kulikauskas V.S., Zatekin V.V., Kiselev D.A., Voronova M.I. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2022. V. 16 (3). P. 402. https://doi.org/ 10.1134/S1027451022030314
  17. Hofmann S. Auger- and X-Ray Photoelectron Spectroscopy in Material Science. Berlin Heidelberg: Springer-Verlag, 2013.
  18. Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии / Ред. Бриггс Д., Сих М.П. М.: Мир, 1987. 600 с.
  19. Монахова Ю.Б., Муштакова С.П. // Журнал аналитической химии. 2012. Т. 67. Вып. 12. С. 1044.
  20. SIMNRA code. https://mam.home.ipp.mpg.de/
  21. Ziegler J.F., Biersack J.P. SRIM 2013 (http://www.srim.org).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».