Study of SiO2 Films Obtained by PECVD and Doped with Zn

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of studying silicon oxide films obtained by plasma enhanced chemical vapor deposition on Si substrates are presented. They were implanted with 64Zn+ ions with an energy of 50 keV (dose 7 × 1016 cm-2) and then annealed in oxygen atmosphere at elevated temperatures. It has been found that after implantation, zinc is distributed in the SiO2 film according to the normal law with a maximum of about 40 nm. After implantation, zinc is in the silicon oxide film both in the metallic phase (closer to the film surface) and in the oxidized state (in the film depth). After annealing up to 800°C, the zinc profile shifts into the film depth; in this case, the zinc is in the film only in the oxidized state. At high temperatures (over 800°C), the zinc profile shifts toward the film surface.

About the authors

V. V. Privezentsev

National Research Centre "Kurchatov Institute" - Scientific Research Institute for System Analysis

Email: v.privezentsev@mail.ru
Moscow, 117218 Russia

A. A. Firsov

National Research Centre "Kurchatov Institute" - Scientific Research Institute for System Analysis

Email: v.privezentsev@mail.ru
Moscow, 117218 Russia

V. S. Kulikauskas

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: v.privezentsev@mail.ru
Moscow, 119991 Russia

V. V. Zatekin

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: v.privezentsev@mail.ru
Moscow, 119991 Russia

E. P. Kirilenko

Institute of Nanotechnology of Microelectronics RAS

Email: v.privezentsev@mail.ru
Moscow, 119991 Russia

A. V. Goryachev

Institute of Nanotechnology of Microelectronics RAS

Email: v.privezentsev@mail.ru
Moscow, 119991 Russia

References

  1. Старостин В.В. Материалы и методы нанотехнологий. М.: БИНОМ, 2015. 434 с.
  2. Litton С.W., Collins T.C., Reynolds D.S. Zinc Oxide Material for Electronic and Optoelectronic Device Application. Chichester: Wiley, 2011.
  3. Neshataeva E., Kümmell T., Bacher G., Ebbers A. // Appl. Phys. Lett. 2009. V. 94. P. 091115. https://doi.org/10.1063/1.3093675
  4. Chu S., Olmedo M., Yang Zh. et al. // Appl. Phys. Lett. 2008. V. 93. P. 181106. https://doi.org/10.1063/1.3012579
  5. Smestad G.P., Gratzel M. // J. Chem. Educ. 1998. V. 75. P. 752. https: j.chem.wisc.edu.
  6. Li C., Yang Y., Sun X.W., Lei W., Zhang X.B., Wang B.P., Wang J.X., Tay B.K., Ye J.D., Lo G.Q., Kwong D.L. // Nanotechnology. 2007. V. 18. P. 135604. https://doi.org/10.1088/0957-4484/18/13/135604
  7. Mehonic A., Shluger A.L., Gao D., Valov I., Miranda E., Ielmini D., Bricalli A., Ambrosi E., Li C., Yang J.J., Xia Q., Kenyon A.J. // Adv. Mater. 2018. V. 30. 43. P. 1801187. https://doi.org/10.1002/adma.201801187
  8. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., ohd Bakhori S.K., Hasan H., Mohamad D. // Nano-Micro Lett. 2015. V. 7. P. 219. https://doi.org/10.1007/s40820-015-0040-x
  9. Inbasekaran S., Senthil R., Ramamurthy G., Sastry T.P. // Intern. J. Innov. Res. Sci. Eng. Technol. 2014. V. 3. P. 8601. www.ijirset.com.
  10. Straumal B.B., Mazilkin A.A., Protasova S.G., Myatiev A.A., Straumal P.B., Schütz G., van Aken P.A., Goering E., Baretzky B. // Phys. Rev. B. 2009. V. 79. P. 205206. https://doi.org/10.1103/PhysRevB.79.205206
  11. Ilyas N., Li C., Wang J., Jiang X., Fu H., Liu F., Gu D., Jiang Y., Li W. // J. Phys. Chem. Lett. 2022. V. 13 (3). P. 884. https://doi.org/10.1021/acs.jpclett.1c03912
  12. Qin F., Zhang Y., Guo Z. et al. // Mater. Adv. 2024. V. 5. P. 4209. https://doi.org/10.1039/d3ma01142
  13. Okulich E.V., Okulich V.I., Tetelbaum D.I., Mikhaylov A.N. // Mater. Lett. 2022. V. 310. P. 131494. https://doi.org/10.1016/j.matlet.2021.131494
  14. Mehonic A., Gerard T., Kenyon A.J. // Appl. Phys. Lett. 2017. V. 111. P. 233502. https://doi.org/10.1063/1.5009069
  15. Chang K.C., Tsai T.M., Chang T.C., Wu H.H., Chen J.H., Syu Y.E., Chang G.W., Chu T.J., Liu G.R., Su Y.T., Chen M.C., Pan J.H., Chen J.Y., Tung C.W., Huang H.C., Tai Y.H., Gan D.S., Sze S.M. // IEEE Eelecron. Dev. Lett. 2013. V. 34 (9). P. 399. https://doi.org/10.1109/LED.2013.2241725
  16. Privezentsev V.V., Kulikauskas V.S., Zatekin V.V., Kiselev D.A., Voronova M.I. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2022. V. 16 (3). P. 402. https://doi.org/ 10.1134/S1027451022030314
  17. Hofmann S. Auger- and X-Ray Photoelectron Spectroscopy in Material Science. Berlin Heidelberg: Springer-Verlag, 2013.
  18. Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии / Ред. Бриггс Д., Сих М.П. М.: Мир, 1987. 600 с.
  19. Монахова Ю.Б., Муштакова С.П. // Журнал аналитической химии. 2012. Т. 67. Вып. 12. С. 1044.
  20. SIMNRA code. https://mam.home.ipp.mpg.de/
  21. Ziegler J.F., Biersack J.P. SRIM 2013 (http://www.srim.org).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).