Manufacturing of Atomically Smooth High-Precision Substrates for X-Ray Mirrors from Single Crystal Silicon by Chemical-Mechanical Polishing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A developed technology for chemical-mechanical polishing of large-sized single-crystal silicon substrates for X-ray optical applications is reported. Compared to the standard technology of chemical-mechanical polishing of silicon wafers for microelectronics, which emphasizes the atomic smoothness of substrates and a small damaged layer, high accuracy of the surface shape is demanded, which can be either flat or curved. Materials for polishing pads and suspensions for mechanical lapping and chemical-mechanical polishing, as well as the main parameters of the processing, were found that ensured an effective surface roughness of 0.17 nm in the spatial frequency range 0.025–65 μm–1 and a root-mean-square error of 8.86 nm of the surface shape deviating from the plane. The surface obtained using the developed technology is not inferior in roughness to the results of the world’s leading manufacturers of silicon wafers for microelectronics and significantly surpasses it in shape accuracy.

About the authors

N. I. Chkhalo

Institute for Physics of Microstructures RAS

Email: chkhalo@ipmras.ru
Nizhny Novgorod, Russia

A. A. Akhsakhalyan

Institute for Physics of Microstructures RAS

Nizhny Novgorod, Russia

M. V. Zorina

Institute for Physics of Microstructures RAS

Nizhny Novgorod, Russia

I. V. Malyshev

Institute for Physics of Microstructures RAS

Nizhny Novgorod, Russia

M. S. Mikhailenko

Institute for Physics of Microstructures RAS

Nizhny Novgorod, Russia

S. N. Belyaev

Institute of Applied Physics RAS

Nizhny Novgorod, Russia

O. A. Mal’shakova

Institute of Applied Physics RAS

Nizhny Novgorod, Russia

References

  1. Shvyd’ko Y., Terentyev S., Blank V., Kolodziej T. // J. Synchrotron Radiat. 2021. V. 28. P. 1720. https://doi.org/10.1107/S1600577521007943
  2. Assoufid L., Graafsma H. // MRS Bull. 2017. V. 42. P. 418. https://doi.org/10.1557/mrs.2017.118
  3. Belure A.R., Biswas A.K., Raghunathan D., Rishipal, Bhartiya S., Rashmi Singh, Rai S.K., Pawade R.S., Kamath M.P., Benerji N.S. // Mater. Today: Proc. 2020. V. 26. P. 2260. https://doi.org/10.1016/j.matpr.2020.02.490
  4. Yamauchi K., Mimura H., Inagaki K., Mori Y. // Rev. Sci. Instrum. 2002. V. 73. P. 4028. https://doi.org/10.1063/1.1510573
  5. Thiess H., Lasser H., Siewert F. // Nucl. Instrum. Methods Phys. Res. A. 2010. V. 616. P. 157. https://doi.org/10.1016/j.nima.2009.10.077
  6. https://www.j-tec.co.jp/english/optical/
  7. Чхало Н.И., Малышев И.В., Пестов А.Е., Полковников В.Н., Салащенко Н.Н., Торопов М.Н. // УФН. 2020. Т. 190. № 1. С. 74. https://doi.org/10.3367/UFNr.2019.05.038601
  8. Chernyshev A., Chkhalo N., Malyshev I., Mikhailenko M., Pestov A., Pleshkov R., Smertin R., Svechnikov M., Toropov M. // Prec. Engin. 2021. V. 69. P. 29. https://doi.org/10.1016/j.precisioneng.2021.01.006
  9. Khatri K.N., Sharma R., Mishra V., Garg H., Karar V. // Adv. Mater. Proc. 2017. V. 2. № 7. P. 425. https://doi.org/10.5185/amp.2017/704
  10. Abdulkadir L.N., Abou-El-Hossein K., Jumare A.I., Odedeyi P.B., Liman M.M., Olaniyan T.A. // Int. J. Adv. Manuf. Technol. 2018. V. 96. P. 173. https://doi.org/10.1007/S00170-17-1529-X
  11. Dinger U., Eisert F., Lasser H., Mayer M., Seifert A., Seitz G., Stacklies S., Stickel F.J., Weiser M. // Proc. SPIE. 2000. V. 4146. P. 35. https://doi.org/10.1117/12.406674
  12. Чхало Н.И., Ахсахалян А.А., Зорина М.В., Торопов М.Н., Токунов Ю.М. // Журнал технической физики. 2022. Т. 92. Вып. 8. С. 1267. https://doi.org/10.21883/JTF.2022.08.52795.103-22
  13. Arnold T., Bohm G., Fechner R., Meister J., Nickel A., Frost F., Hansel T., Schindler A. // Nucl. Instrum. Methods Phys. Res. A. 2010. V. 616. P. 147. https://doi.org/10.1016/J.NIMA.2009.11.013
  14. Barysheva M.M., Vainer Yu.A., Gribkov B.A., Zorina M.V., Pestov A.E., Rogachev D.N., Salashenko N.N., Chkhalo N.I. // Bull. Russ. Acad. Sci. Physics. 2011. V. 75. № 1. P. 67. https://doi.org/10.3103/S1062873811010059
  15. https://en.chotest.com/detail.aspx?cid=889
  16. Martinez-Galarce D., Soufli R., Windt D.L., Bruner M., Gullikson E., Khatri Sh., Spiller E., Robinson J.C., Baker Sh., Prast E. // Opt. Eng. 2013. V. 52. Iss. 9. P. 095102. https://doi.org/10.1117/1.OE.52.9.095102
  17. Blunt R.T. // White Light Interferometry — a Production Worthy Technique for Measuring Surface Roughness on Semiconductor Wafers. Proc. of CS MANTECH Conference: Vancouver, Canada. 2006. P. 59.
  18. Teichert C., MacKay J.F., Savage D.E., Lagally M.G., Brohl M., Wagner P. // Appl. Phys. Lett. 1995. V. 66. P. 2346. https://doi.org/10.1063/1.113978
  19. Силин Д.Е., Кожеватов И.Е., Куликова Е.Х., Пигасин А.В., Сперанский С.Б., Бельков С.А., Деркач И.Н., Лобачев Д.И., Чернов И.Е. // Приборы и техника эксперимента. 2018. № 3. C. 83. https://doi.org/10.7868/S0032816218020234
  20. Ziegler E., Peverini L., Vaxelaire N., Cordon-Rodriguez A., Rommeveaux A., Kozhevnikov I.V., Susini J. // Nucl. Instrum. Methods Phys. Res. A. 2010. V. 616. Iss. 2–3. P. 188. https://doi.org/10.1016/j.nima.2009.12.062
  21. Mikhailenko M.S., Pestov A.E., Chkhalo N.I., Zorina M.V., Chernyshev A.K., Salashchenko N.N., Kuznetsov I.I. // Appl. Optics. 2022. V. 61. № 10. P. 2825. https://doi.org/10.1364/AO.455096
  22. Kozhevnikov I.V., Pyatakhin M.V. // J. X-Ray Sci. Technol. 2000. V. 8. P. 253.
  23. Asadchikov V. E., Kozhevnikov I. V., Krivonosov Yu. S., Mercier R., Metzger T. H., Morawe C., Ziegler E. // Nucl. Instrum. Methods Phys. Res. A. 2004. V. 530. P. 575. https://doi.org/10.1016/J.NIMA.2004.04.216
  24. Rashchenko S.V., Skamarokha M.A., Baranov G.N., Zubavichus Y.V., Rakshun I.V. // AIP Conf. Proc. 2020. V. 2299. P. 060001. https://doi.org/10.1063/5.0030346

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).