Investigation of the Effect of Defocusing on Interference Patterns Obtained in X-Ray Three-Block Interferometers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of studying the effect of defocusing on interference patterns obtained in X-ray three-block interferometers are presented. Three-block defocused interferometers without a thick block analyzer, with a thick block analyzer and with a separate thick block (enlarger) are designed, manufactured and tested. It is shown that fine structures of interference patterns obtained from three-block defocused interferometers are observed in cases when the interferometer analyzer block is thick or an enlarger is used (fourth thick block). Theoretical calculations show that in the presence of defocusing, as a result of superposition of beams on the input surface of the interferometer analyzer, an interference pattern is formed in the form of parallel fringes (lines) lying in the scattering plane. The coordinates of the maxima of the interference fringes (lines) and the period of the fringes are calculated in the cases without a thick crystal and in its presence, as well as the magnification factor. It has been experimentally proved that a thick crystal (enlarger crystal) does not introduce new information into the interference pattern, but only increases its size in the scattering plane.

About the authors

H. R. Drmeyan

Institute of Applied Problems of Physics NAS of the Republic of Armenia

Author for correspondence.
Email: drm-henrik@mail.ru
Armenia, Yerevan

M. S. Vasilyan

Institute of Applied Problems of Physics NAS of the Republic of Armenia

Email: drm-henrik@mail.ru
Russian Federation, Yerevan

References

  1. Бушуев В.А., Ингал В.Н., Белявская Е.А. // Кристаллография. 1996. Т. 41. № 5. С. 808.
  2. Аладжаджян Г.М., Кочарян А.К., Труни К.Г. // Кристаллография 1979. Т. 24. С. 1135.
  3. Bushuev V.A., Sergeev A.A. // J. Surf. Invest.: X-ray, Synchrotron, Neutron Tech. 2001. V. 16. P. 1429.
  4. Bezirganyan P.H., Drmeyan H.R., Aladzhadzhyan G.M. // Phys. Stat. Sol. A. 1979. V. 54. P. 729.
  5. Bonse U., te Kaat E. // Z. Physik. 1971. V. 243. P. 14. https://doi.org/10.1007/BF01401026
  6. Drmeyan H.R., Bezirganyan P.H. // Phys. Stat. Sol. A. 1985. V. 91. P. 379.
  7. Eyramjyan T.H., Mnatsakanyan T.S., Balyan M.K. // Acta Crystallogr. A. 2018. V. 74. P. 595. https://doi.org/10.1107/S2053273318009889
  8. Bonse U., Graeff W. // Topics Appl. Phys. 1977. V. 22. P. 93. https://www.amazon.com/X–Ray–Optics–Appli-cations–Applied–Physics/dp/3662309130?asin=3662309130&revisionId=&format=4&depth=1
  9. Petraschek D., Folk R. // Phis. Stat. Sol. A. 1976. V. 36. P. 147.
  10. Bonse U., Hart M. // Z. Physik. 1965. V. 188. P. 154. https://doi.org/10.1007/BF01339402
  11. Gasparyan L.G., Bezirganyan P.H., Mkrtchyan V.P., Trouni K.G., Toneyan A.G. // Phys. Stat. Sol. A. 1991. V. 123. Iss. 1. P. 77. https://doi.org/10.1002/pssa.2211230106
  12. Su R., Thomas M., Leach R., Coupland J. // Optics Lett. 2018. V. 43. Iss. 1. P. 82. https://doi.org/10.1364/OL.43.000082
  13. Shvyd’ko Yu.V., Lerche M., Wille H.-C., Gerdau E., Lucht M., Ruter H.D. // Phys. Rev. Lett. 2003. V. 90. P. 014302. https://doi.org/10.1103/PhysRevLett.90.013904
  14. Sasso C.P., Manaa G., Massaa E. // J. Appl. Crystallogr. 2021. V. 54. P. 1403. https://doi.org/10.1107/S1600576721007962
  15. Momose A. // Opt. Express. 2003. V. 11. № 19. P. 2303. https://doi.org/10.1364/OE.11.002303
  16. Lwin T.-T., Yoneyama A., Maruyama H., Takeda T. // Technol. Cancer Res. Treatment. 2021. V. 20. P. 1. https://doi.org/10.1177/15330338211010121
  17. Lider V.V. // Phys. Solid State. 2021. V. 63. № 2. P. 189. https://doi.org/10.1134/S1063783421020141
  18. Nsofini J., Sarenac D., Cory D.G., Pushin D.A. // Phys. Rev. A. 2019. V. 99. P. 043614. https://doi.org/10.1103/PhysRevA.99.043614
  19. Chistiakov S.G., Filatov N.A., Kocharyan V.R., Gogolev A.S., Rukavishnikov V.S. // J. Contemporary Phys. (Armenian Academy of Sciences). 2019. V 54. P. 381. https://doi.org/10.3103/S106833721904008X
  20. A.с. 720349 (СССР). Способ дифракционной микрорентгенографии. / Ереванский государственный университет. Безирганян П.А., Дрмеян Г.Р., Эйрамджян Ф.О. // Б.И. 1980. № 9.
  21. A.с. 720350 (СССР). Рентгеновский интерферометр. / Ереванский государственный университет. Безирганян П.А., Дрмеян Г.Р., Эйрамджян Ф.О. // Б.И. 1980. № 9.
  22. А.с. 817552 (СССР). Способ дифракционной микрорентгенографии монокристаллов. / Ереванский государственный университет. Безирганян П.А., Дрмеян Г.Р. // Б.И. 1981. № 12.
  23. Дрмеян Г.Р. // Изв. НАН Армении и ГИУ Армении. 2003. Т. 56. № 3. С. 394.
  24. Drmeyan H.R. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2022. V. 16. № 4. Р. 647. https://doi.org/10.1134/S1027451022040255
  25. Authier A. // Acta Geologica et Geografhica Universitatis Comenianae: Geologica. 1968. V. 14. P. 37.
  26. Takagi S. // Acta Crystallogr. 1962. V. 15. P. 1311. https://doi.org/10.1107/S0365110X62003473
  27. Борн М., Вольф Э. Основы оптики. М.: Наука, 1970. 721 с.
  28. Свешников А.Г., Тихонов А.Н. Теория функции комплексной переменной. М.: Наука, 1967. 321 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Defocused three-block L-L-L interferometer and the course of rays in it with illustration of the displacement of superimposed beams on the input surface of the analyzer block: S - splitter block; M - mirror block; A - analyzer; tS, tM, tA - thicknesses of the blocks, respectively; ΔZ - defocus value; θ - Bragg angle

Download (269KB)
3. Fig. 2. System consisting of a three-block defocused interferometer with thin and thick blocks

Download (156KB)
4. Fig. 3. Distribution of amplitudes in the system shown in Fig. 2

Download (156KB)
5. Fig. 4. Defocused three-block interferometer with thin blocks and the course of rays in it (a), as well as the interference pattern obtained from it (b)

Download (235KB)
6. Fig. 5. Defocused three-block interferometer with a thick analyzer block (a) and the interference pattern obtained from it (b)

Download (208KB)
7. Fig. 6. System consisting of a three-block defocused interferometer with thin blocks and a separate thick block (a) and interference patterns obtained on the photoplate at positions 1 (b) and 2 (c)

Download (243KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies