Composition of silicon jointly doped with impurity atoms of gallium and phosphorus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, the morphology and composition of the silicon surface are experimentally studied using a scanning electron microscope, X-ray phase analysis, and various peaks in the Raman spectra. The spectral characteristics of silicon doped with impurity atoms of phosphorus and gallium have been studied. It was shown, that in the silicon lattice simultaneously doped with gallium and phosphorus atoms impurity atoms created binary complexes. Experimental determination of the concentration of gallium and phosphorus atoms made it possible to reveal a significant increase in the concentration of gallium, in comparison with its fundamental solubility in silicon. It is shown that a sufficiently large concentration of such elementary cells can lead to a significant change in the electrophysical parameters of silicon, i.e. the possibility of obtaining a new silicon-based material.

About the authors

N. F. Zikrillaev

Tashkent State Technical University

Author for correspondence.
Email: zikrillaev@mail.ru
Uzbekistan, 100095, Tashkent

S. V. Koveshnikov

Tashkent State Technical University

Email: zikrillaev@mail.ru
Uzbekistan, 100095, Tashkent

X. S. Turekeev

Tashkent State Technical University

Email: axmet-8686@mail.ru
Uzbekistan, 100095, Tashkent

B. K. Ismailov

Tashkent State Technical University

Email: zikrillaev@mail.ru
Uzbekistan, 100095, Tashkent

References

  1. Adachi S. Properties of Semiconductor Alloys Group−IV, III−V and II−VI semiconductors. John Wiley & Sons, Ltd, 2009. 400 p.
  2. Saidov A.S., Saparov D.V., Usmonov Sh.N., Kutlimura- tov A., Abdiev J.M., Kalanov M., Razzakov A.Sh., Akhmedov A.M. // Adv. Condensed Matter Phys. 2021. https://doi.org/10.1155/2021/3472487
  3. Соболев М.С., Лазаренко А.А., Никитина Е.В., Пирогов Е.В., Гудовских А.С., Егоров А.Ю. // ФТП. 2015. Т. 49. № 4. С. 569.
  4. Bakhadirkhanov M.K., Isamov S.B., Kenzhaev Z.T. // Euroasian J. Semicond. Sci. Engineering. 2020. V. 2. № 5. P. 9.
  5. Бахадирханов М.К., Зикриллаев Н.Ф., Исамов С.Б., Турекеев Х.С., Валиев С.А. // ФТП. 2022. Т. 56. № 2. С. 199. https://doi.org/10.21883/0000000000/
  6. Исмайлов К.А., Зикриллаев Н.Ф., Ковешников С.В., Косбергенов Е.Ж. // ФТП. 2022. Т. 56. № 4. С. 438. https://doi.org/10.21883/FTP.2022.04.52200.9768/
  7. Абрамкин Д.С., Петрушков М.О., Путято М.А., Семягин Б.Р., Емельянов Е.А., Преображенский В.В., Гутаковский А.К., Шамирзаев Т.С. // ФТП. 2019. Т. 53. № 9. С. 1167. https://doi.org/10.21883/FTP.2019.09.48118.01/
  8. Уваров А.В., Баранов А.И., Вячеславова Е.А., Каложный Н.А., Кудряшов Д.А., Максимова А.А., Морозов И.А., Минтаиров С.А., Салий Р.А., Гудовских А.С. // Письма в ЖТФ. 2021. Т. 47. № 14. С. 51. https://doi.org/ 10.21883/PJTF.2021.14.51189.18781
  9. Зайнабиддинов C.З., Саидов А.С., Бобоев А.Й., Усмонов Ж.Н. // Поверхность. Рентген., синхротр, и нейтрон. исслед. 2021. № 1. С. 107. https://doi.org/10.31857/S1028096022120342
  10. Schneider K., Welter P., Baungarther Y., Hahn H., Czornomaz L., Seidler P. // J. Light Wave Technol. 2018. V. 36. № 14. P. 2994.
  11. Feifel M., Rachow Th., Banick J., Ohlmann J., Janz S., Hermle M., Dimroth F., Lackner D. // IEEE Journal of Photovoltaics. 2015. V. 6. № 1. P. 384. https://doi.org/10.1109/JPHOTOV.2015.2478062
  12. Zhou A. Analyse structurales de pseudo-substrats GaP/Si et d’hétérostructures CIGS/GaP/Si pour des applications photovoltaïques: Doctoral dissertation. INSA de Rennes, Français, 2019. 128 p.
  13. Xiong Q., Gupta R., Adu K.W., Dickey E.C., Lian G.D., Tham D., Fischer J.E., Eklund P.C. // J. Nanosci. Nanotechnol. 2003. V. 3. № 4. P. 335.
  14. Заварицкая Т.Н., Караванский В.А., Квит А.В., Мельник Н.Н. // ФТП. 1998. Т. 32. № 2. С. 235.
  15. Cano P., Ruiz C.M., Navarro A., Galiana B., Garsia I., Rey-Stolle I. // Coatings. 2021. V. 11. P. 398.
  16. Жиляев Ю.В., Криволапчук В.В., Назаров Н., Никитина И.П., Полетаев Н.К., Сергеев Д.В., Травников В.В., Федоров Л.М. // ФТП. 1990. Т. 24. № 7. С. 1303.
  17. Хожиев Ш.Т., Ганиев А.А., Ротштейн В.М., Косимов И.О., Муродкобилов Д.М. // Международный научно-исследовательский журнал. 2020. Т. 98. № 8. С. 54. https://doi.org/10.23670/IRJ.2020.98.8.007
  18. Лунин Л.С., Лунина М.Л., Девицкий О.В., Сысо- ев И.А. // ФТП. 2017. № 51. Т. 3. 403 с. https://doi.org/ 10.21883/FTP.2017.03.44216.8299
  19. Абрамкин Д.С., Петрушков М.О., Емельянов Е.А., Ненашев А.В., Есин М.Ю., Васев А.В., Путято М.А., Богомолов Д.Б., Гутаковский А.К., Преображенский В.В. // ФТП. 2021. Т. 55. № 2. С. 139. https://doi.org/ 10.21883/FTP.2021.02.50500.9529
  20. Уваров А.В., Шаров В.А., Кудряшов Д.А., Гудовских А.С. ФТП. 2022. Т. 56. № 2. С. 213. https://doi.org/ 10.21883/FTP.2022.02.51964.9748
  21. Бахадирханов М.К., Исамов С.Б. // ЖТФ. 2021. Т. 91. № 11. С. 1678. https://doi.org/ 10.21883/JTF.2021.11.51528.60-21
  22. Bakhadyrkhanov M.K., Kenzhaev Z.T., Koveshni- kov S.V., Usmonov A.A., Mavlonov G.Kh. // Neorgani-cheskie Materialy. 2022. V. 58. № 1. P. 3. https://doi.org/10.1134/S0020168522010034
  23. Зикриллаев Х.Ф., Аюпов К.С., Мавлонов Г.Х., Усмонов А.А., Шоабдурахимова М.М. // ФТП. 2022. Т. 56. № 6. С. 528. https://doi.org/ 10.21883/FTP.2022.06.52582.9829
  24. Зикриллаев Н.Ф., Ковешников С.В., Исамов С.Б., Абдурахманов Б.А., Кушиев Г.А. // ФТП. 2022. Т. 56. № 5. С. 495. https://doi.org/ 10.21883/FTP.2022.05.52352.9788

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Morphology (a) and composition (b) of the near-surface layer of a silicon sample after diffusion of impurity phosphorus and gallium atoms according to scanning electron microscopy data. The elemental composition of the sample according to the analysis results: Si 86.2(8); Ga 9.2(9); P 4.2(2); O 0.4(2) wt. %.

Download (478KB)
3. Fig. 2. X-ray of silicon doped with phosphorus and gallium atoms. The graph shows which phases correspond to the found reflexes. The 200GaP and 400Si reflexes are shown on an enlarged scale.

Download (153KB)
4. Fig. 3. Raman spectrum of a sample of monocrystalline gallium phosphide. The maxima correspond to transverse (1) and longitudinal (2) optical phonons.

Download (128KB)
5. Fig. 4. Raman scattering spectrum of a sample of monocrystalline silicon doped with phosphorus and gallium atoms. The maxima correspond to transverse (1) and longitudinal (2) optical phonons and the Si–Si interaction (3).

Download (129KB)
6. Fig. 5. Images of the surface of silicon doped with phosphorus and gallium atoms (a) and silicon doped with phosphorus atoms only (b) obtained by atomic force microscopy. The size of the scanning field is 10×10 microns.

Download (572KB)
7. Fig. 6. Spectral dependence of the short-circuit current of silicon samples doped only with phosphorus atoms (1) and doped with gallium phosphide molecules (2).

Download (166KB)
8. Fig. 7. The proposed Si2GaP binary unit cell in silicon.

Download (67KB)
9. Fig. 8. The band structure of silicon with enriched binary Si2AIIIBV unit cells.

Download (86KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies