The SKIF X-Techno Beamline Project

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Beamlines nowadays installed at synchrotron radiation centers typically pose different and sometimes even incompatible requirements to X-ray beams being utilized. Some techniques require minimum attainable beam cross-sections in order to enable microbeam techniques with the sample mapping. To the contrary, relatively broad X-ray beams with the uniform intensity distribution are needed to address problems related to X-ray irradiation-based processing of materials or fabrication of components and devices with X-ray lithography approaches. The present paper describes the concept of a novel beamline named X-Techno proposed for the synchrotron radiation facility SKIF. It would use synchrotron beams as wide as 100 mm in the horizontal plane in different spectral ranges with either out of three experimental chambers to study materials and manufacture micro and nanostructures. The beamline will be specifically suitable for studies of physicochemical properties of materials under intense X-ray irradiation within the spectral range from 2 to 70 keV.

Авторлар туралы

V. Nazmov

Budker Institute of Nuclear Physics of SB RAS; Institute of Solid State Chemistry and Mechanochemistry of SB RAS

Хат алмасуға жауапты Автор.
Email: V.P.Nazmov@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

B. Goldenberg

Budker Institute of Nuclear Physics of SB RAS; Shared-Use Center “SKIF” at the Boreskov Institute of Catalysis of SB RAS

Email: V.P.Nazmov@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630559, Koltsovo

Әдебиет тізімі

  1. ANKA Instrumentation Book (2005) Germany, Karlsruhe, http://www.fzk.de/anka/ November 2005.
  2. Meng X., Yu H., Wang Y., Ren J., Xue C., Yang S., Guo Z., Zhao J., Wu Y., Tai R. // J. Synchrotron Rad. 2021. V. 28. P. 902. https://www.doi.org/10.1107/S1600577521003398
  3. Shukla R., Kannojia H.K., Mukherjee C., Sankar P.R., Thakur B.S., Sinha A.K., Pandey D. // ISSS J. Micro Smart Systems. 2020. V. 9. P. 173. https://www.doi.org/10.1007/s41683-020-00064-z
  4. Kong J.R., Leonard Q.J., Vladimirsky Y., Bourdillon A.J. // Proc. of SPIE. 2000. V. 3997. P. 721. https://www.doi.org/10.1117/12.390044
  5. Subbotin A.N., Gaganov V.V., Kalutsky A.V., Pindyurin V.F., Nazmov V.P., Nikolenko A.D., Krasnov A.K. // Metrologia. 2000. V. 37. № 5. P. 497. https://www.doi.org/10.1088/0026-1394/37/5/34
  6. Chkhalo N.I., Garakhin S.A., Malyshev I.V., Polkovnikov V.N., Toropov M.N., Salashchenko N.N., Ulasevich B.A., Rakshun Ya.V., Chernov V.A., Dolbnya I.P., Raschenko S.V. // Tech. Phys. 2022. Iss. 8. P. 1075. https://www.doi.org/10.21883/TP.2022.08.54576.100-22
  7. Kolachevskii N.N., Pirozhkov A.S., Ragozin E.N. // Quantum Electron. 2000. V. 30. № 5. P. 428. https://www.doi.org/10.1070/QE2000v030n05ABEH001736
  8. Рагозин Е.Н., Вишняков Е.А., Колесников А.О., Пирожков А.С., Шатохин А.Н. Апериодические элементы в оптике мягкого рентгеновского диапазона. М.: Физматлит, 2018. 136 с.
  9. Weitkamp T., Zanette I., Schulz G., Bech M., Rutishausere S., Lang S., Donath T., Tapfer A., Deyhle H., Bernard P., Valade J.-P., Reznikova E., Kenntner J., Mohr J., Müller B., Pfeiffer F., David C., Baruchel J. // AIP Conf. Proc. 2011. V. 1365. P. 28. https://www.doi.org/10.1063/1.3625297
  10. El-Kholi A., Mohr J., Nazmov V. // Nucl. Instrum. Methods Phys. Res. A. V. 448. Iss. 1–2. P. 497. https://www.doi.org/10.1016/S0168-9002 (00)00239-4
  11. Wallrabe U., Saile V. LIGA technology for R&D and industrial applications. // MEMS: A practical guide to design, analysis and applications / Ed. Korvink J.G., Paul O. Berlin, Heidelberg: Springer, 2006. P. 853. https://www.doi.org/10.1007/978-3-540-33655-6_16
  12. Nazmov V., Reznikova E., Mohr J., Schulz J., Voigt A. // J. Mater. Process. Technol. 2015. V. 225. № 11. P. 170. https://www.doi.org/10.1016/j.jmatprotec.2015.05.030
  13. Nazmov V.P., Mezentseva L.A., Pindyurin V.F., Petrov V.V., Yakovleva E.N. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. № 1–2. P. 493. https://www.doi.org/10.1016/S0168-9002 (00)00238-2
  14. Goldenberg B.G., Nazmov V.P., Lemzyakov A.G. // Bull. RAS: Phys. 2019. V. 83. № 2. P. 124. https://www.doi.org/10.3103/S106287381902014X
  15. Goldenberg B.G., Lemzyakov A.G., Nazmov V.P., Pindyurin V.F. // Phys. Procedia. 2016. V. 84. P. 205. https://www.doi.org/10.1016/j.phpro.2016.11.036
  16. Reznikova E., Mohr J., Boerner M., Nazmov V., Jakobs P.-J. // Microsyst. Technol. 2008. V. 14. № 9. P. 1683. https://www.doi.org/10.1007/s00542-007-0507-x
  17. Nazmov V., Goldenberg B., Vasiliev A., Asadchikov V. // J. Micromech. Microeng. 2021. V. 31. № 5. P. 055011. https://www.doi.org/10.1088/1361-6439/abf331
  18. Nazmov V., Reznikova E., Last A., Mohr J., Saile V., Simon R., DiMichiel M. // AIP Conf. Proc. 2007. V. 879. P. 770. https://doi.org/10.1063/1.2436174
  19. Simon M., Reznikova E., Nazmov V., Last A., Jark W. // Proc. of SPIE. 2008. V. 7077. P. 70771Q. https://www.doi.org/10.1117/12.795423
  20. Nazmov V., Reznikova E., Last A., Mohr J., Saile V., DiMichiel M., Gottert J. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 582. № 1. P. 120. https://www.doi.org/10.1016/j.nima.2007.08.076

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (119KB)
3.

Жүктеу (98KB)

© В.П. Назьмов, Б.Г. Гольденберг, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>