Проект экспериментальной станции X-Techno для источника синхротронного излучения “СКИФ”

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Экспериментальные станции на источниках синхротронного излучения могут предъявлять разные и даже взаимоисключающие требования к используемому рентгеновскому пучку. В некоторых случаях требуются пучки с минимально возможным поперечным сечением для реализации зондовых методов исследования образцов в режиме картографирования. Для решения задач радиационной обработки материала или изготовления коммерческого продукта с использованием подходов рентгеновской литографии необходим рентгеновский пучок сравнительно большой площади, обеспечивающий равномерное поле экспонирования. На разрабатываемой для источника синхротронного излучения “СКИФ” экспериментальной станции, получившей наименование “X-Techno”, станет возможным формировать пучки синхротронного излучения размером в горизонтальной плоскости до 100 мм и различным спектральным составом. Такие пучки будут применяться поочередно в одной из трех исследовательских камер станции для исследования радиационных эффектов в материалах, а также формирования структур в области микро- и нано размеров. Конструкция станции позволит изучать физико-химические свойства материалов под действием рентгеновского излучения в спектральном диапазоне от 2 до 70 кэВ.

Об авторах

В. П. Назьмов

Институт ядерной физики им. Г.И. Будкера СО РАН; Институт химии твердого тела и механохимии СО РАН

Автор, ответственный за переписку.
Email: V.P.Nazmov@inp.nsk.su
Россия, 630090, Новосибирск; Россия, 630090, Новосибирск

Б. Г. Гольденберг

Институт ядерной физики им. Г.И. Будкера СО РАН; Центр коллективного пользования “СКИФ” Института катализа им. Г.К. Борескова СО РАН

Email: V.P.Nazmov@inp.nsk.su
Россия, 630090, Новосибирск; Россия, 630559, Кольцово

Список литературы

  1. ANKA Instrumentation Book (2005) Germany, Karlsruhe, http://www.fzk.de/anka/ November 2005.
  2. Meng X., Yu H., Wang Y., Ren J., Xue C., Yang S., Guo Z., Zhao J., Wu Y., Tai R. // J. Synchrotron Rad. 2021. V. 28. P. 902. https://www.doi.org/10.1107/S1600577521003398
  3. Shukla R., Kannojia H.K., Mukherjee C., Sankar P.R., Thakur B.S., Sinha A.K., Pandey D. // ISSS J. Micro Smart Systems. 2020. V. 9. P. 173. https://www.doi.org/10.1007/s41683-020-00064-z
  4. Kong J.R., Leonard Q.J., Vladimirsky Y., Bourdillon A.J. // Proc. of SPIE. 2000. V. 3997. P. 721. https://www.doi.org/10.1117/12.390044
  5. Subbotin A.N., Gaganov V.V., Kalutsky A.V., Pindyurin V.F., Nazmov V.P., Nikolenko A.D., Krasnov A.K. // Metrologia. 2000. V. 37. № 5. P. 497. https://www.doi.org/10.1088/0026-1394/37/5/34
  6. Chkhalo N.I., Garakhin S.A., Malyshev I.V., Polkovnikov V.N., Toropov M.N., Salashchenko N.N., Ulasevich B.A., Rakshun Ya.V., Chernov V.A., Dolbnya I.P., Raschenko S.V. // Tech. Phys. 2022. Iss. 8. P. 1075. https://www.doi.org/10.21883/TP.2022.08.54576.100-22
  7. Kolachevskii N.N., Pirozhkov A.S., Ragozin E.N. // Quantum Electron. 2000. V. 30. № 5. P. 428. https://www.doi.org/10.1070/QE2000v030n05ABEH001736
  8. Рагозин Е.Н., Вишняков Е.А., Колесников А.О., Пирожков А.С., Шатохин А.Н. Апериодические элементы в оптике мягкого рентгеновского диапазона. М.: Физматлит, 2018. 136 с.
  9. Weitkamp T., Zanette I., Schulz G., Bech M., Rutishausere S., Lang S., Donath T., Tapfer A., Deyhle H., Bernard P., Valade J.-P., Reznikova E., Kenntner J., Mohr J., Müller B., Pfeiffer F., David C., Baruchel J. // AIP Conf. Proc. 2011. V. 1365. P. 28. https://www.doi.org/10.1063/1.3625297
  10. El-Kholi A., Mohr J., Nazmov V. // Nucl. Instrum. Methods Phys. Res. A. V. 448. Iss. 1–2. P. 497. https://www.doi.org/10.1016/S0168-9002 (00)00239-4
  11. Wallrabe U., Saile V. LIGA technology for R&D and industrial applications. // MEMS: A practical guide to design, analysis and applications / Ed. Korvink J.G., Paul O. Berlin, Heidelberg: Springer, 2006. P. 853. https://www.doi.org/10.1007/978-3-540-33655-6_16
  12. Nazmov V., Reznikova E., Mohr J., Schulz J., Voigt A. // J. Mater. Process. Technol. 2015. V. 225. № 11. P. 170. https://www.doi.org/10.1016/j.jmatprotec.2015.05.030
  13. Nazmov V.P., Mezentseva L.A., Pindyurin V.F., Petrov V.V., Yakovleva E.N. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. № 1–2. P. 493. https://www.doi.org/10.1016/S0168-9002 (00)00238-2
  14. Goldenberg B.G., Nazmov V.P., Lemzyakov A.G. // Bull. RAS: Phys. 2019. V. 83. № 2. P. 124. https://www.doi.org/10.3103/S106287381902014X
  15. Goldenberg B.G., Lemzyakov A.G., Nazmov V.P., Pindyurin V.F. // Phys. Procedia. 2016. V. 84. P. 205. https://www.doi.org/10.1016/j.phpro.2016.11.036
  16. Reznikova E., Mohr J., Boerner M., Nazmov V., Jakobs P.-J. // Microsyst. Technol. 2008. V. 14. № 9. P. 1683. https://www.doi.org/10.1007/s00542-007-0507-x
  17. Nazmov V., Goldenberg B., Vasiliev A., Asadchikov V. // J. Micromech. Microeng. 2021. V. 31. № 5. P. 055011. https://www.doi.org/10.1088/1361-6439/abf331
  18. Nazmov V., Reznikova E., Last A., Mohr J., Saile V., Simon R., DiMichiel M. // AIP Conf. Proc. 2007. V. 879. P. 770. https://doi.org/10.1063/1.2436174
  19. Simon M., Reznikova E., Nazmov V., Last A., Jark W. // Proc. of SPIE. 2008. V. 7077. P. 70771Q. https://www.doi.org/10.1117/12.795423
  20. Nazmov V., Reznikova E., Last A., Mohr J., Saile V., DiMichiel M., Gottert J. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 582. № 1. P. 120. https://www.doi.org/10.1016/j.nima.2007.08.076

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (119KB)
3.

Скачать (98KB)

© В.П. Назьмов, Б.Г. Гольденберг, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах