Study of Reflectivity and Microstructure of Mo/Be Multilayer Mirrors

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reflection coefficient and microstructure of Mo/Be multilayer mirrors were studied as functions of Γ, the ratio of the Mo layer thickness to the period dp. The thickness and period of the layers were studied using X‑ray diffraction (wavelength 0.154 nm). Clearly defined high-intensity Bragg reflection peaks indicate good reproducibility of layer thicknesses over the depth of the multilayer structure and high quality of interfaces. The reflectivity of the mirror at a wavelength of 11.4 nm was maximum 62% at Γ = 0.42. It sharply decreased at higher and lower values of Γ. Both Mo and Be layers at Γ = 0.42 were polycrystals, which were studied using X-ray diffraction and Raman spectroscopy, respectively. It was also found that the sizes of crystallites almost coincided with the thicknesses of the Be and Mo layers in the period.

作者简介

G. Antysheva

Institute for Physics of Microstructures RAS; Lobachevsky State University of Nizhny Novgorod

编辑信件的主要联系方式.
Email: sikretnoo@mail.ru
Russia, 603087, Afonino, ,; Russia, 603950, Nizhny Novgorod

N. Kumar

Institute for Physics of Microstructures RAS

编辑信件的主要联系方式.
Email: kumar@ipmras.ru
Russia, 603087, Afonino, ,

R. Pleshkov

Institute for Physics of Microstructures RAS

Email: kumar@ipmras.ru
Russia, 603087, Afonino, ,

P. Yunin

Institute for Physics of Microstructures RAS; Lobachevsky State University of Nizhny Novgorod

Email: kumar@ipmras.ru
Russia, 603087, Afonino, ,; Russia, 603950, Nizhny Novgorod

V. Polkovnikov

Institute for Physics of Microstructures RAS

Email: kumar@ipmras.ru
Russia, 603087, Afonino, ,

N. Chkhalo

Institute for Physics of Microstructures RAS

Email: kumar@ipmras.ru
Russia, 603087, Afonino, ,

参考

  1. Medvedev R.V., Zameshin A.A., Sturm J.M., Yakshin A.E., Bijkerk F. // AIP Adv. 2020. V. 10. P. 45305. https://doi.org/10.1063/1.5143397
  2. Underwood J.H., Barbee T.W., Jr., Frieber C. // Appl. Opt. 1986. V. 25. P. 1730. https://doi.org/10.1364/AO.25.001730
  3. Yu B., Jin C., Yao S., Li C., Liu Y., Zhou F., Guo B., Wang H., Xie Y., Wang L. // Appl. Opt. 2017. V. 56. P. 7462. https://doi.org/10.1364/AO.56.007462
  4. Huang Q., Medvedev V., van de Kruijs R., Yakshin A., Louis E., Bijkerk F. // Appl. Phys. Rev. 2017. V. 4. P. 11104. https://doi.org/10.1063/1.4978290
  5. Akhsakhalyan A.D., Kluenkov E.B., Lopatin A.A., Luchin V.I., Nechay A.N., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Svechnikov M.V., Toropov M.N., Tsybin N.N., Chkhalo N.I., Shcherbakov A.V. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2017. V. 11. P. 1. https://doi.org/10.7868/S0207352817010048
  6. Bajt S. // J. Vac. Sci. Technol. A. 2000. V. 18. P. 557.
  7. Svechnikov M.V., Chkhalo N.I., Gusev S.A., Nechay A.N., Pariev D.E., Pestov A.E., Polkovnikov V.N., Tatarskiy D.A., Salashchenko N.N., Schafers F., Sertsu M.G., Sokolov A., Vainer Y.A., Zorina M.V. // Optics Express. 2018. V. 26. P. 33718. https://doi.org/10.1364/OE.26.033718
  8. Полковников В.Н., Салащенко Н.Н., Свечников М.В., Чхало Н.И. // УФН. 2020. Т. 190. С. 92. https://doi.org/10.3367/UFNr.2019.05.038623
  9. Kumar N., Pleshkov R.S., Garakhin S.A., Nezhdanov A.V., Yunin P.A., Polkovnikov V.N., Chkhalo N.I. // Surf. Interfaces. 2022. V. 28. P. 101656. https://doi.org/10.1016/j.surfin.2021.101656
  10. Kozakov A.T., Kumar N., Garakhin S.A., Polkovnikov V.N., Chkhalo N.I., Nikolskii A.V., Scrjabin A.A., Nezhdanov A.V., Yunin P.A. // Appl. Surf. Sci. 2021. V. 566. P. 150616. https://doi.org/10.1016/j.apsusc.2021.150616
  11. Kumar N., Pleshkov R.S., Nezhdanov A.V., Polkovnikov V.N., Yunin P.A., Chkhalo N.I., Mashin A.I. // J. Phys. Chem. 2021. V. 125. P. 2729. https://doi.org/10.1021/ACS.JPCC.0C10210
  12. Pardanaud C., Rusu M.I., Giacometti G., Martin C., Addab Y., Roubin P., Lungu C.P., Porosnicu C., Jepu I., Dinca P., Lungu M., Pompilian O.G., Mateus R., Alves E., Rubel M. // Phys. Scr. 2016. V. 167. P. 14027. https://doi.org/10.1088/0031-8949/T167/1/014027
  13. Feldman D.W., Parker J.H., Jr., Ashkin M. // Phys. Rev. Lett. 1968. V. 21. P. 607. https://doi.org/10.1103/PhysRevLett.21.607
  14. Roy A.P., Dasannacharya B.A., Thaper C.L., Iyengar P.K. // Phys. Rev. Lett. 1973. V. 30. P. 906. https://doi.org/10.1103/PhysRevLett.30.906
  15. Nedelcu I., van de R.W.E., Yakshin A.E., Bijkerk F. // Phys. Rev. B. 2007. V. 76. P. 245404. https://doi.org/10.1103/PhysRevB.76.245404
  16. Гарахин С.А., Забродин И.Г., Зуев С.Ю., Каськов И.А., Лопатин А.Я., Нечай А.Н., Полковников В.Н., Салащенко Н.Н., Цыбин Н.Н., Чхало Н.И. // Квантовая электроника. 2017. Т. 47. № 4. С. 385.
  17. Landau L.D., Lifshitz E.M. Electrodynamics of Continuous Media. Oxford: Pergamon Press, 1984. 475 p.
  18. Starkov I.A., Starkov A.S. // J. Phys.: Conf. Ser. 2016. V. 741. P. 12004. https://doi.org/10.1088/1742-6596/741/1/012004
  19. Chkhalo N.I., Fedorchenko M.V., Kovalenko N.V., Kruglyakov E.P., Volokhov A.I., Chernov V.A., Mytnichenko S.V. // Nucl. Instrum. Methods Phys. Res. 1995. V 359. P. 121. https://doi.org/10.1016/0168-9002(94)01633-X
  20. Svechnikov M. // J. Appl. Crystallogr. 2020. V. 53. P. 244. https://doi.org/10.1107/S160057671901584X
  21. Kumar N., Pleshkov R.S., Nezhdanov A.V., Polkovnikov V.N., Yunin P.A., Chkhalo N.I., Mashin A.I. // J. Phys. Chem. C. 2021. V. 125. P. 2729. https://doi.org/10.1021/ACS.JPCC.0C10210

补充文件

附件文件
动作
1. JATS XML
2.

下载 (413KB)
3.

下载 (236KB)

版权所有 © Г.Д. Антышева, Н. Кумар, Р.С. Плешков, П.А. Юнин, В.Н. Полковников, Н.И. Чхало, 2023

##common.cookie##