Investigation of the Corrosion Properties of Bulk Amorphous Metal Alloys Based on Zirconium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Corrosion resistance of zirconium-based amorphous alloys in simulating a biological fluid, as well as in aqueous solutions of hydrochloric acid (with HCl concentration 0.1, 0.2, 0.4 mol/L) was studied in this work. When studying the effect of simulating a biological fluid, the samples were exposed to the environment in two ways. In the first case, the sample was completely immersed in a corrosive liquid. In the second case, the sample was subjected to local action of a drop of biological fluid deposited on the surface. It has been established that prolonged exposure to the medium leads to the dissolution of the surface layer of the sample, while the local impact of drops practically does not affect the surface. Preliminary ion implantation of argon and nitrogen ions leads to a decrease in the effect of the biological fluid on the samples. Polarization curves are obtained for all investigated alloys. On the curves obtained during measurements on alloys in simulating a biological fluid, the cathode and anode branches have a standard form. It has been established that the polarization curves for zirconium-based alloys in an aqueous solutions (with HCl concentration 0.1, 0.2, 0.4 mol/l) depend on the elemental composition of the alloys. It has been established that in a sample without copper, the corrosion potential at different concentrations of HCl changes insignificantly. For a sample with a copper content of 15%, the corrosion potential shifts to the cathodic region with an increase in the concentration of hydrochloric acid. The polarization curves of the sample with a higher copper content of 45% are qualitatively different from the curves of the other samples. It is noted that, as in the previous sample, with an increase in the concentration of hydrochloric acid, the corrosion potential shifts to the negative region. It has been established that the corrosion resistance of amorphous alloys based on zirconium, which is the basis of the alloys under study, in the studied solutions increases in comparison with the crystalline one, which is due to the amorphous structure of the electrode material, which complicates the transition of the metal to the ionic state.

About the authors

A. V. Yakovlev

Tambov State University named G.R. Derzhavin

Email: fedorov-tsu.tmb@inbox.ru
Russia, 392000, Tambov

D. V. Balybin

Tambov State University named G.R. Derzhavin

Email: fedorov-tsu.tmb@inbox.ru
Russia, 392000, Tambov

V. A. Fedorov

Tambov State University named G.R. Derzhavin

Author for correspondence.
Email: fedorov-tsu.tmb@inbox.ru
Russia, 392000, Tambov

T. N. Pluzhnikova

Tambov State University named G.R. Derzhavin

Email: fedorov-tsu.tmb@inbox.ru
Russia, 392000, Tambov

D. Yu. Fedotov

Tambov State University named G.R. Derzhavin

Email: fedorov-tsu.tmb@inbox.ru
Russia, 392000, Tambov

A. A. Shlykova

Tambov State University named G.R. Derzhavin

Email: fedorov-tsu.tmb@inbox.ru
Russia, 392000, Tambov

References

  1. Suryanarayana C., Inoue A. Bulk Metallic Glasses. Boca Raton. CRC Pres. 2017. 542 p. https://www.doi.org/10.1201/9781315153483
  2. Li H.F., Zheng Y.F. // Acta Biomaterialia. 2016. V. 36. P. 1. https://www.doi.org/10.1016/j.actbio.2016.03.047
  3. Hua N., Huang L., Chen W., He W., Zhang T. // Mater. Sci. Eng. 2014. V. 44. P. 400. https://www.doi.org/10.1016/j.msec.2014.08.049
  4. Geissler D., Uhlemann M., and Gebert A. // Corrosion Sci. 2019. V. 159. P. 108057. https://www.doi.org/10.1016/j.corsci.2019.06.012
  5. Gostin P.F., Eigel D., Grell D., Uhlemann M., Kerscher Eb., Eckert J., Gebert An. // Metals. 2015. V. 5. P. 1262. https://www.doi.org/10.3390/met5031262
  6. Grell D., Wilkin Y., Gostin P., Gebert A., Kerscher E. // Frontiers in Materials. 2017. V. 3. P. 1. https://www.doi.org/10.3389/fmats.2016.00060
  7. Wataha J., Lockwood P., Schedle A. // J. Biomed. Mater. Res. 2000. V. 52. P. 360. https://www.doi.org/10.1002/1097-4636(200011)52:2<360: :aid-jbm16>3.0.co;2-b
  8. Sunderman F. // Fed. Proc. 1978. V. 37. P. 40.
  9. Liu L., Qiu C., Chen Q., Zhang S. // J. Alloy. Comp. 2006. V. 425. P. 268. https://www.doi.org/10.1016/J.JALLCOM.2006.01.048
  10. Hiromoto S., Tsai A., Sumita M., Hanawa T. // Corros. Sci. 2000. V. 42. P. 2193. https://www.doi.org/10.1016/S0010-938X(00)00056-1
  11. Li Y., Zhang W., Dong C., Qiang J., Fukuhara M., Makino A., Inoue A. // Mater. Sci. Eng. A. 2011. V. 528. P. 8551. https://www.doi.org/10.1016/j.msea.2011.07.077
  12. Zberg B., Uggowitzer P., Lofer J. // Nat. Mater. 2009. V. 8. P. 887. https://www.doi.org/10.1038/nmat2542
  13. Raju V., Kühn U., Wol U., Schneider F., Eckert J., Reiche R., Gebert A. // Mater. Lett. 2002. V. 57. P. 173.
  14. Qin C., Asami K., Zhang T., Zhang W., Inoue A. // Mater. Trans. 2003. V. 44. P. 749.
  15. Pang S., Zhang T., Asami K., Inoue A. // J. Mater. Res. 2003. V. 18. P. 1652. https://www.doi.org/10.1557/JMR.2003.0227
  16. Inoue T., Zhang J., Saida M., Matsushita M., Sakurai T. // Mater. Trans. JIM. 1999. V. 40. P. 1181. https://www.doi.org/10.2320/matertrans1989.40.1181
  17. Liu L., Chan K., Pang G. // Appl. Phys. Lett. 2004. V. 85. P. 2788. https://www.doi.org/10.1063/1.1801677
  18. Liu Y., Wang Y.-M., Pang H.-F., Zhao Q., Liu L. // Acta Biomaterialia. 2013. V. 9. P. 7043. https://www.doi.org/10.1016/j.actbio.2013.02.019
  19. Huang H.-H., Huang H.-M., Lin M.-C., Zhang W., Sun Y.-S., Kai W. // J. Alloy. Comp. 2014. V. 615. P. S660. https://www.doi.org/10.1016/J.JALLCOM.2014.01.098
  20. Huang H.H., Sun Y.S., Wu C.P., Liu C.F., Liaw P.K., Kai W. // J. Int. 2012. V. 30. P. 139. https://www.doi.org/10.1016/j.intermet.2012.03.015
  21. Liu L., Liu Z., Chan K., Luo H., Cai Q., Zhang S. // Scr. Mater. 2008. V. 58. P. 231. https://www.doi.org/10.1016/J.SCRIPTAMAT.2007. 09.040
  22. Jiang Q., Qin C., Amiya K., Nagata S., Inoue A., Zheng R., Cheng G., Nie X., Jiang J. // Intermetallics. 2008. V. 16. P. 225. https://www.doi.org/10.1016/j.intermet.2007.09.009
  23. Schroeder V., Ritchie R. // Acta Mater. 2006. V. 54. P. 1785. https://www.doi.org/10.1016/j.actamat.2005.12.006
  24. Kawashima A., Kurishita H., Kimura H., Inoue A. // Mater. Trans. 2007. V. 48. P. 1969. https://www.doi.org/10.2320/matertrans.mrp2007085
  25. Kawashima A., Yokoyama Y., Inoue A. // Corros. Sci. 2010. V. 52. P. 2950. https://www.doi.org/10.1016/j.corsci.2010.05.007
  26. Yokoyama Y., Fujita K., Yavari A., Inoue A. // Philos. Mag. Lett. 2009. V. 89. P. 322. https://www.doi.org/10.1080/09500830902873575
  27. Иванов М.Б., Ерубаев Е.А., Кузьменко И.Н., Колобов Ю.Р. // Научные ведомости. Серия: Математика. Физика. 2013. № 26(169). Вып. 33. С. 152.
  28. Улиг Г.Г., Реви Р.У. Коррозия и борьба с ней. Введение в коррозионную науку и технику. Л.: Химия, 1989. 456 с.
  29. Флорианович Г.М., Ларченко Е.А. // Электрохимия. 1995. Т. 31. № 11. С. 1227.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (90KB)
3.

Download (687KB)
4.

Download (741KB)
5.

Download (748KB)
6.

Download (1MB)
7.

Download (55KB)
8.

Download (233KB)

Copyright (c) 2023 А.В. Яковлев, Д.В. Балыбин, В.А. Федоров, Т.Н. Плужникова, Д.Ю. Федотов, А.А. Шлыкова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies