Conceptual Design of a Time-of-Flight Powder Diffractometer for a Compact Neutron Source

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A conceptual design of a powder diffractometer for a compact neutron source DARIA based on a linear proton accelerator is presented. The proposed concept extends the possibilities of optimizing the device performance not only by varying the diffractometer parameters, but also the neutron source parameters, such as the moderator temperature, repetition rate, and duration of neutron pulses. The results of calculating the spectrum of the target assembly for different types of moderators are presented. The efficiency of the neutron source system for increasing the neutron flux on the sample is evaluated in the McStas software package. The calculation results show the principal possibility of implementing the neutron diffraction method under conditions of limited luminosity of the compact neutron source.

About the authors

E. V. Moskvin

Saint-Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”

Author for correspondence.
Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg; Russia, 188300, Gatchina

N. A. Grigoryeva

Saint-Petersburg State University

Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg

N. A. Kovalenko

Saint-Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”

Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg; Russia, 188300, Gatchina

S. V. Grigoriev

Saint-Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”

Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg; Russia, 188300, Gatchina

References

  1. Silverman I., Arenshtam A., Berkovits D. et al. // AIP Conf. Proceed. 2018. V. 1962. P. 020002. https://doi.org/10.1063/1.5035515
  2. Furusaka M., Sato H., Takashi K., Ohnuma M., Kiyanagi Y. // Phys. Procedia. 2014. V. 60. P. 167. https://doi.org/10.1016/j.phpro.2014.11.024
  3. Beyer R., Birgersson E., Elekes Z., Ferrari A., Grosse E., Hannaske R., Junghans A., Kögler T., Massarczyk R., Matić A. et al. // Nucl. Instrum. Methods Phys. Res. A. 2013. V. 23. P. 151. https://doi.org/10.1016/j.nima.2013.05.010
  4. Kobayashi T., Ikeda S., Otake Y., Ikeda Y., Hayashizaki N. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 994. P. 65091. https://doi.org/10.1016/j.nima.2021.165091
  5. Baxter D. // The Eur. Phys. J. Plus. 2016. V. 131. P. 83. https://doi.org/10.1140/epjp/i2016-16083-9
  6. Ene D., Borcea C., Flaska M., Kopecky S., Negret A., Mondelaers W., Plompen A.J.M. // Int. Conf. on Nuclear Data for Science and Technology. 2008. V. ND 2007. https://doi.org/10.1051/ndata:07330
  7. Wei J., Chen H.B., Huang W.H., Tang C.X., Xing Q.Z., Loong C.-K., Fu S.N., Tao J.Z., Guan X.L., Shimizu H.M. // Proceed. PAC09, Vancouver, BC, Canada, 2009. https://s3.cern.ch/inspire-prod-files-f/f4fca313b2051-fb1e4e7bf3650e70af1
  8. Ikeda Y., Taketani A., Takamura M., Sunaga H., Kumagai M., Oba Y., Otake Y., Suzuki H. // Nucl. Instrum. Methods Phys. Res. A. 2016. V. 833. P. 61. https://doi.org/10.1016/j.nima.2016.06.127
  9. Iwamoto C., Takamura M., Ueno K., Kataoka M., Kurihara R., Xu P., Otake Y. // ISIJ Int. 2022. V. 62. № 5. P. 1013. https://doi.org/10.2355/isijinternational.ISIJINT-2021-420
  10. Niita K., Sato T., Iwase H., Nose H., Nakashima H., Sihver L. // Rad. Measur. 2006. V. 41. № 9–10. P. 1080. https://doi.org/10.1016/j.radmeas.2006.07.013
  11. Lefmann K., Nielsen N.K. // Neutron News. 1999. V. 10. № 3. P. 20.https://doi.org/10.1080/10448639908233684
  12. Павлов К.А., Коник П.И., Коваленко Н.А., Кулевой Т.В., Серебренников Д.А., Субботина В.В., Павлова А.Е., Григорьев С.В. // Кристаллография. 2022. Т. 67. № 1. С. 5. https://doi.org/10.31857/S002347612201009X
  13. Pavlova A.E., Petrova A.O., Konik P.I., Pavlov K.A., Grigoriev S.V. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. № 1. P. 70. https://doi.org/10.1134/S1027451021010122
  14. Carpenter J.M. // Nucl. Instrum. Methods. 1967. V. 47. P. 179. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/33373/0000771.pdf?sequence=1
  15. Hannon A.C. // Nucl. Instrum. Methods Phys. Res. A. 2005. V. 551. P. 88. https://doi.org/10.1016/j.nima.2005.07.053
  16. Maier-Leibnitz H., Springer T. // J. Nucl. En. 1963. V. 17. № 4–5. P. 217. https://doi.org/10.1016/0368-3230(63)90022-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (80KB)
3.

Download (112KB)
4.

Download (252KB)
5.

Download (177KB)
6.

Download (97KB)

Copyright (c) 2023 Е.В. Москвин, Н.А. Григорьева, Н.А. Коваленко, С.В. Григорьев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies