Conceptual Design of a Time-of-Flight Powder Diffractometer for a Compact Neutron Source

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A conceptual design of a powder diffractometer for a compact neutron source DARIA based on a linear proton accelerator is presented. The proposed concept extends the possibilities of optimizing the device performance not only by varying the diffractometer parameters, but also the neutron source parameters, such as the moderator temperature, repetition rate, and duration of neutron pulses. The results of calculating the spectrum of the target assembly for different types of moderators are presented. The efficiency of the neutron source system for increasing the neutron flux on the sample is evaluated in the McStas software package. The calculation results show the principal possibility of implementing the neutron diffraction method under conditions of limited luminosity of the compact neutron source.

Sobre autores

E. Moskvin

Saint-Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg; Russia, 188300, Gatchina

N. Grigoryeva

Saint-Petersburg State University

Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg

N. Kovalenko

Saint-Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”

Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg; Russia, 188300, Gatchina

S. Grigoriev

Saint-Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”

Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg; Russia, 188300, Gatchina

Bibliografia

  1. Silverman I., Arenshtam A., Berkovits D. et al. // AIP Conf. Proceed. 2018. V. 1962. P. 020002. https://doi.org/10.1063/1.5035515
  2. Furusaka M., Sato H., Takashi K., Ohnuma M., Kiyanagi Y. // Phys. Procedia. 2014. V. 60. P. 167. https://doi.org/10.1016/j.phpro.2014.11.024
  3. Beyer R., Birgersson E., Elekes Z., Ferrari A., Grosse E., Hannaske R., Junghans A., Kögler T., Massarczyk R., Matić A. et al. // Nucl. Instrum. Methods Phys. Res. A. 2013. V. 23. P. 151. https://doi.org/10.1016/j.nima.2013.05.010
  4. Kobayashi T., Ikeda S., Otake Y., Ikeda Y., Hayashizaki N. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 994. P. 65091. https://doi.org/10.1016/j.nima.2021.165091
  5. Baxter D. // The Eur. Phys. J. Plus. 2016. V. 131. P. 83. https://doi.org/10.1140/epjp/i2016-16083-9
  6. Ene D., Borcea C., Flaska M., Kopecky S., Negret A., Mondelaers W., Plompen A.J.M. // Int. Conf. on Nuclear Data for Science and Technology. 2008. V. ND 2007. https://doi.org/10.1051/ndata:07330
  7. Wei J., Chen H.B., Huang W.H., Tang C.X., Xing Q.Z., Loong C.-K., Fu S.N., Tao J.Z., Guan X.L., Shimizu H.M. // Proceed. PAC09, Vancouver, BC, Canada, 2009. https://s3.cern.ch/inspire-prod-files-f/f4fca313b2051-fb1e4e7bf3650e70af1
  8. Ikeda Y., Taketani A., Takamura M., Sunaga H., Kumagai M., Oba Y., Otake Y., Suzuki H. // Nucl. Instrum. Methods Phys. Res. A. 2016. V. 833. P. 61. https://doi.org/10.1016/j.nima.2016.06.127
  9. Iwamoto C., Takamura M., Ueno K., Kataoka M., Kurihara R., Xu P., Otake Y. // ISIJ Int. 2022. V. 62. № 5. P. 1013. https://doi.org/10.2355/isijinternational.ISIJINT-2021-420
  10. Niita K., Sato T., Iwase H., Nose H., Nakashima H., Sihver L. // Rad. Measur. 2006. V. 41. № 9–10. P. 1080. https://doi.org/10.1016/j.radmeas.2006.07.013
  11. Lefmann K., Nielsen N.K. // Neutron News. 1999. V. 10. № 3. P. 20.https://doi.org/10.1080/10448639908233684
  12. Павлов К.А., Коник П.И., Коваленко Н.А., Кулевой Т.В., Серебренников Д.А., Субботина В.В., Павлова А.Е., Григорьев С.В. // Кристаллография. 2022. Т. 67. № 1. С. 5. https://doi.org/10.31857/S002347612201009X
  13. Pavlova A.E., Petrova A.O., Konik P.I., Pavlov K.A., Grigoriev S.V. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. № 1. P. 70. https://doi.org/10.1134/S1027451021010122
  14. Carpenter J.M. // Nucl. Instrum. Methods. 1967. V. 47. P. 179. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/33373/0000771.pdf?sequence=1
  15. Hannon A.C. // Nucl. Instrum. Methods Phys. Res. A. 2005. V. 551. P. 88. https://doi.org/10.1016/j.nima.2005.07.053
  16. Maier-Leibnitz H., Springer T. // J. Nucl. En. 1963. V. 17. № 4–5. P. 217. https://doi.org/10.1016/0368-3230(63)90022-3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (80KB)
3.

Baixar (112KB)
4.

Baixar (252KB)
5.

Baixar (177KB)
6.

Baixar (97KB)

Declaração de direitos autorais © Е.В. Москвин, Н.А. Григорьева, Н.А. Коваленко, С.В. Григорьев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies