Reaction of CO Oxidation on the Surface of Pd Nanoparticles: Optimization by Reinforcement Learning

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The yield of reaction products depends on the interaction between processes on the catalyst surface: adsorption, activation, reaction, desorption, and others. These processes, in turn, depend on the magnitude of the flows of reaction mixtures, temperature, and pressure. Under stationary conditions, active sites on the surface can be poisoned by reaction by-products or blocked by an excess of adsorbed reactant molecules. Dynamic control of reaction parameters takes into account changes in surface properties and adjusts temperature, flow rates and other parameters accordingly. A reinforcement learning algorithm was applied to control the oxidation reaction of carbon monoxide CO on the surface of palladium nanoparticles. The algorithm was trained to maximize the rate of carbon dioxide production based on information about the magnitude of CO, O2 and CO2 fluxes at each time step. A gradient policy algorithm with a continuous action space was chosen, and observations of the flow rates were extended over several successive time steps, which made it possible to obtain a set of non-stationary solutions. The maximum yield of the product is achieved with a periodic change in gas flows, which ensures a balance between the available adsorption sites and the concentration of activated intermediates. This methodology opens up prospects for optimizing catalytic reactions under nonstationary conditions.

Авторлар туралы

M. Lifar

The Smart Materials Research Institute, Southern Federal University; Vorovich Institute of Mathematics, Mechanics, and Computer Sciences, Southern Federal University

Email: guda@sfedu.ru
Russia, 344090, Rostov-on-Don; Russia, 344090, Rostov-on-Don

A. Tereshchenko

The Smart Materials Research Institute, Southern Federal University

Хат алмасуға жауапты Автор.
Email: tereshch1@gmail.com
Russia, 344090, Rostov-on-Don

A. Bulgakov

The Smart Materials Research Institute, Southern Federal University; Vorovich Institute of Mathematics, Mechanics, and Computer Sciences, Southern Federal University

Email: guda@sfedu.ru
Russia, 344090, Rostov-on-Don; Russia, 344090, Rostov-on-Don

A. Guda

The Smart Materials Research Institute, Southern Federal University

Хат алмасуға жауапты Автор.
Email: guda@sfedu.ru
Russia, 344090, Rostov-on-Don

S. Guda

The Smart Materials Research Institute, Southern Federal University; Vorovich Institute of Mathematics, Mechanics, and Computer Sciences, Southern Federal University

Email: guda@sfedu.ru
Russia, 344090, Rostov-on-Don; Russia, 344090, Rostov-on-Don

A. Soldatov

The Smart Materials Research Institute, Southern Federal University

Email: guda@sfedu.ru
Russia, 344090, Rostov-on-Don

Әдебиет тізімі

  1. Pakhare D., Spivey J. // Chem. Soc. Rev. 2014. V. 43. № 22. P. 7813. https://doi.org/10.1039/C3CS60395D
  2. Pareek V., Bhargava A., Gupta R., Jain N., Panwar J. // Adv. Sci. Eng. Med. 2017. V. 9. № 7. P. 527. https://doi.org/10.1166/asem.2017.2027
  3. Kinoshita K. // J. Electrochem. Soc. 1990. V. 137. № 3. P. 845. https://doi.org/10.1149/1.2086566
  4. Rojluechai S., Chavadej S., Schwank J.W., Meeyoo V. // Catal. Commun. 2007. V. 8. № 1. P. 57. https://doi.org/10.1016/j.catcom.2006.05.029
  5. DeSantis C.J., Peverly A.A., Peters D.G., Skrabalak S.E. // Nano Lett. 2011. V. 11. № 5. P. 2164. https://doi.org/10.1021/nl200824p
  6. Sun C., Cao Z., Wang J., Lin L., Xie X. // New J. Chem. 2019. V. 43. № 6. P. 2567. https://doi.org/10.1039/C8NJ05152F
  7. Vatti S.K., Ramaswamy K.K., Balasubramanaian V. // J. Adv. Nanomat. 2017. V. 2. № 1. P. 127. https://doi.org/10.22606/jan.2017.22006
  8. Cuenya B.R. // Thin Solid Films. 2010. V. 518. № 12. P. 3127. https://doi.org/10.1016/j.tsf.2010.01.018
  9. Schalow T., Brandt B., Laurin M., Schauermann S., Libuda J., Freund H.J. // J. Catal. 2006. V. 242. № 1. P. 58. https://doi.org/10.1016/j.jcat.2006.05.021
  10. Skorynina A., Tereshchenko A., Usoltsev O., Bugaev A., Lomachenko K., Guda A., Groppo E., Pellegrini R., Lamberti C., Soldatov A. // Rad. Phys. Chem. 2018. V. 175. № 1. P. 108079. https://doi.org/10.1016/j.radphyschem.2018.11.033
  11. Albers P., Pietsch J., Parker S.F. // J. Mol. Catal. A. 2001. V. 173. № 1–2. P. 275. https://doi.org/10.1016/S1381-1169(01)00154-6
  12. Gromotka Z., Yablonsky G., Ostrovskii N., Constales D. // Entropy. 2021. V. 23. № 7. P. 818. https://doi.org/10.3390/e23070818
  13. Armstrong C.D., Teixeira A.R. // React. Chem. Eng. 2020. V. 5. № 12. P. 2185. https://doi.org/10.1039/D0RE00330A
  14. Cutlip M., Hawkins C., Mukesh D., Morton W., Kenney C. // Chem. Eng. Commun. 1983. V. 22. № 5–6. P. 329.https://doi.org/10.1080/00986448308940066
  15. Vaporciyan G., Annapragada A., Gulari E. // Chem. Eng. Sci. 1988. V. 43. № 11. P. 2957. https://doi.org/10.1016/0009-2509(88)80049-6
  16. Schwankner R., Eiswirth M., Möller P., Wetzl K., Ertl G. // J. Chem. Phys. 1987. V. 87. № 1. P. 742. https://doi.org/10.1063/1.453572
  17. Eiswirth M., Ertl G. // Phys. Rev. Lett. 1988. V. 60. № 15. P. 1526. https://doi.org/10.1103/PhysRevLett.60.1526
  18. Newton M.A., Ferri D., Smolentsev G., Marchionni V., Nachtegaal M. // Nat. Commun. 2015. V. 6. № 1. P. 8675. https://doi.org/10.1038/ncomms9675
  19. Fang H., Haibin L., Zengli Z. // Int. J. Chem. Eng. 2009. V. 2009. № 1. P. 710515. https://doi.org/10.1155/2009/710515
  20. Moghtaderi B. // Energy Fuels. 2012. V. 26. № 1. P. 15. https://doi.org/10.1021/ef201303d
  21. Yoshida H., Kakei R., Fujiwara A., Tomita A., Miki T., Machida M. // Top Catal. 2019. V. 62. № 1. P. 345. https://doi.org/10.1007/s11244-018-1100-5
  22. Toyao T., Maeno Z., Takakusagi S., Kamachi T., Takigawa I., Shimizu K.-I. // ACS Catal. 2019. V. 10. № 3. P. 2260. https://doi.org/10.1021/acscatal.9b04186
  23. Segler M.H.S., Preuss M., Waller M.P. // Nature. 2018. V. 555. № 7698. P. 604. https://doi.org/10.1038/nature25978
  24. Kaelbling L.P., Littman M.L., Moore A.W. // J. Artif. Intell. Res. 1996. V. 4. P. 237. https://doi.org/10.1613/jair.301
  25. Sutton R.S., Barto A.G. Introduction to Reinforcement Learning. Cambridge: MIT Press, 1998. P. 380.
  26. Littman M.L. // Nature. 2015. V. 521. № 7553. P. 445. https://doi.org/10.1038/nature14540
  27. Neumann M., Palkovits D.S. // Ind. Eng. Chem. Res. 2022. V. 61. № 11. P. 3910. https://doi.org/10.1021/acs.iecr.1c04622
  28. Watkins C.J. Learning from Delayed Rewards: PhD Thesis. Cambridge: King’s Colledge, 1989. 242 p.
  29. Watkins C.J., Dayan P. // Mach. Learn. 1992. V. 8. № 3. P. 279. https://doi.org/10.1007/BF00992698
  30. Lillicrap T.P., Hunt J.J., Pritzel A., Heess N., Erez T., Tassa Y., Silver D., Wierstra D. Continuous Control with Deep Reinforcement Learning; https://arxiv.org/ abs/1509.02971.pdf.
  31. Alhazmi K., Albalawi F., Sarathy S.M. // Chem. Eng. J. 2022. V. 428. P. 130993. https://doi.org/10.1016/j.cej.2021.130993
  32. Zhou Z., Li X., Zare R.N. // ACS Cent. Sci. 2017. V. 3. № 12. P. 1337. https://doi.org/10.1021/acscentsci.7b00492
  33. Engel T., Ertl G. // Elementary Steps in the Catalytic Oxidation of Carbon Monoxide on Platinum Metals. Munchen: Elsevier, 1979. P. 43.
  34. Chorkendorff I., Niemantsverdriet J.W. // Concepts of Modern Catalysis and Kinetics. Weinheim: John Wiley & Sons, 2017. P. 66.
  35. Libuda J., Meusel I., Hoffmann J., Hartmann J., Piccolo L., Henry C., Freund H.-J. // J. Chem. Phys. 2001. V. 114. № 10. P. 4669.
  36. Nelder J.A., Mead R. // The Comput. J. 1965. V. 7. № 4. P. 308. https://doi.org/10.1093/comjnl/7.4.308
  37. Unni M., Hudgins R., Silveston P. // Can. J. Chem. Eng. 1973. V. 51. № 6. P. 623. https://doi.org/10.1002/cjce.5450510601
  38. Abdul-Kareem H.K., Silveston P., Hudgins R. // Chem. Eng. Sci. 1980. V. 35. № 10. P. 2077. https://doi.org/10.1016/0009-2509(80)85029-9
  39. Abdul-Kareem H.K., Hudgins R., Silveston P. // Chem. Eng. Sci. 1980. V. 35. № 10. P. 2085. https://doi.org/10.1016/0009-2509(80)85030-5
  40. Zhou X., Barshad Y., Gulari E. // Chem. Eng. Sci. 1986. V. 41. № 5. P. 1277. https://doi.org/10.1016/0009-2509(86)87100-7

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (118KB)
3.

Жүктеу (195KB)
4.

Жүктеу (94KB)
5.

Жүктеу (220KB)

© М.С. Лифарь, А.А. Терещенко, А.Н. Булгаков, А.А. Гуда, С.А. Гуда, А.В. Солдатов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».