Reaction of CO Oxidation on the Surface of Pd Nanoparticles: Optimization by Reinforcement Learning

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The yield of reaction products depends on the interaction between processes on the catalyst surface: adsorption, activation, reaction, desorption, and others. These processes, in turn, depend on the magnitude of the flows of reaction mixtures, temperature, and pressure. Under stationary conditions, active sites on the surface can be poisoned by reaction by-products or blocked by an excess of adsorbed reactant molecules. Dynamic control of reaction parameters takes into account changes in surface properties and adjusts temperature, flow rates and other parameters accordingly. A reinforcement learning algorithm was applied to control the oxidation reaction of carbon monoxide CO on the surface of palladium nanoparticles. The algorithm was trained to maximize the rate of carbon dioxide production based on information about the magnitude of CO, O2 and CO2 fluxes at each time step. A gradient policy algorithm with a continuous action space was chosen, and observations of the flow rates were extended over several successive time steps, which made it possible to obtain a set of non-stationary solutions. The maximum yield of the product is achieved with a periodic change in gas flows, which ensures a balance between the available adsorption sites and the concentration of activated intermediates. This methodology opens up prospects for optimizing catalytic reactions under nonstationary conditions.

About the authors

M. S. Lifar

The Smart Materials Research Institute, Southern Federal University; Vorovich Institute of Mathematics, Mechanics, and Computer Sciences, Southern Federal University

Email: guda@sfedu.ru
Russia, 344090, Rostov-on-Don; Russia, 344090, Rostov-on-Don

A. A. Tereshchenko

The Smart Materials Research Institute, Southern Federal University

Author for correspondence.
Email: tereshch1@gmail.com
Russia, 344090, Rostov-on-Don

A. N. Bulgakov

The Smart Materials Research Institute, Southern Federal University; Vorovich Institute of Mathematics, Mechanics, and Computer Sciences, Southern Federal University

Email: guda@sfedu.ru
Russia, 344090, Rostov-on-Don; Russia, 344090, Rostov-on-Don

A. A. Guda

The Smart Materials Research Institute, Southern Federal University

Author for correspondence.
Email: guda@sfedu.ru
Russia, 344090, Rostov-on-Don

S. A. Guda

The Smart Materials Research Institute, Southern Federal University; Vorovich Institute of Mathematics, Mechanics, and Computer Sciences, Southern Federal University

Email: guda@sfedu.ru
Russia, 344090, Rostov-on-Don; Russia, 344090, Rostov-on-Don

A. V. Soldatov

The Smart Materials Research Institute, Southern Federal University

Email: guda@sfedu.ru
Russia, 344090, Rostov-on-Don

References

  1. Pakhare D., Spivey J. // Chem. Soc. Rev. 2014. V. 43. № 22. P. 7813. https://doi.org/10.1039/C3CS60395D
  2. Pareek V., Bhargava A., Gupta R., Jain N., Panwar J. // Adv. Sci. Eng. Med. 2017. V. 9. № 7. P. 527. https://doi.org/10.1166/asem.2017.2027
  3. Kinoshita K. // J. Electrochem. Soc. 1990. V. 137. № 3. P. 845. https://doi.org/10.1149/1.2086566
  4. Rojluechai S., Chavadej S., Schwank J.W., Meeyoo V. // Catal. Commun. 2007. V. 8. № 1. P. 57. https://doi.org/10.1016/j.catcom.2006.05.029
  5. DeSantis C.J., Peverly A.A., Peters D.G., Skrabalak S.E. // Nano Lett. 2011. V. 11. № 5. P. 2164. https://doi.org/10.1021/nl200824p
  6. Sun C., Cao Z., Wang J., Lin L., Xie X. // New J. Chem. 2019. V. 43. № 6. P. 2567. https://doi.org/10.1039/C8NJ05152F
  7. Vatti S.K., Ramaswamy K.K., Balasubramanaian V. // J. Adv. Nanomat. 2017. V. 2. № 1. P. 127. https://doi.org/10.22606/jan.2017.22006
  8. Cuenya B.R. // Thin Solid Films. 2010. V. 518. № 12. P. 3127. https://doi.org/10.1016/j.tsf.2010.01.018
  9. Schalow T., Brandt B., Laurin M., Schauermann S., Libuda J., Freund H.J. // J. Catal. 2006. V. 242. № 1. P. 58. https://doi.org/10.1016/j.jcat.2006.05.021
  10. Skorynina A., Tereshchenko A., Usoltsev O., Bugaev A., Lomachenko K., Guda A., Groppo E., Pellegrini R., Lamberti C., Soldatov A. // Rad. Phys. Chem. 2018. V. 175. № 1. P. 108079. https://doi.org/10.1016/j.radphyschem.2018.11.033
  11. Albers P., Pietsch J., Parker S.F. // J. Mol. Catal. A. 2001. V. 173. № 1–2. P. 275. https://doi.org/10.1016/S1381-1169(01)00154-6
  12. Gromotka Z., Yablonsky G., Ostrovskii N., Constales D. // Entropy. 2021. V. 23. № 7. P. 818. https://doi.org/10.3390/e23070818
  13. Armstrong C.D., Teixeira A.R. // React. Chem. Eng. 2020. V. 5. № 12. P. 2185. https://doi.org/10.1039/D0RE00330A
  14. Cutlip M., Hawkins C., Mukesh D., Morton W., Kenney C. // Chem. Eng. Commun. 1983. V. 22. № 5–6. P. 329.https://doi.org/10.1080/00986448308940066
  15. Vaporciyan G., Annapragada A., Gulari E. // Chem. Eng. Sci. 1988. V. 43. № 11. P. 2957. https://doi.org/10.1016/0009-2509(88)80049-6
  16. Schwankner R., Eiswirth M., Möller P., Wetzl K., Ertl G. // J. Chem. Phys. 1987. V. 87. № 1. P. 742. https://doi.org/10.1063/1.453572
  17. Eiswirth M., Ertl G. // Phys. Rev. Lett. 1988. V. 60. № 15. P. 1526. https://doi.org/10.1103/PhysRevLett.60.1526
  18. Newton M.A., Ferri D., Smolentsev G., Marchionni V., Nachtegaal M. // Nat. Commun. 2015. V. 6. № 1. P. 8675. https://doi.org/10.1038/ncomms9675
  19. Fang H., Haibin L., Zengli Z. // Int. J. Chem. Eng. 2009. V. 2009. № 1. P. 710515. https://doi.org/10.1155/2009/710515
  20. Moghtaderi B. // Energy Fuels. 2012. V. 26. № 1. P. 15. https://doi.org/10.1021/ef201303d
  21. Yoshida H., Kakei R., Fujiwara A., Tomita A., Miki T., Machida M. // Top Catal. 2019. V. 62. № 1. P. 345. https://doi.org/10.1007/s11244-018-1100-5
  22. Toyao T., Maeno Z., Takakusagi S., Kamachi T., Takigawa I., Shimizu K.-I. // ACS Catal. 2019. V. 10. № 3. P. 2260. https://doi.org/10.1021/acscatal.9b04186
  23. Segler M.H.S., Preuss M., Waller M.P. // Nature. 2018. V. 555. № 7698. P. 604. https://doi.org/10.1038/nature25978
  24. Kaelbling L.P., Littman M.L., Moore A.W. // J. Artif. Intell. Res. 1996. V. 4. P. 237. https://doi.org/10.1613/jair.301
  25. Sutton R.S., Barto A.G. Introduction to Reinforcement Learning. Cambridge: MIT Press, 1998. P. 380.
  26. Littman M.L. // Nature. 2015. V. 521. № 7553. P. 445. https://doi.org/10.1038/nature14540
  27. Neumann M., Palkovits D.S. // Ind. Eng. Chem. Res. 2022. V. 61. № 11. P. 3910. https://doi.org/10.1021/acs.iecr.1c04622
  28. Watkins C.J. Learning from Delayed Rewards: PhD Thesis. Cambridge: King’s Colledge, 1989. 242 p.
  29. Watkins C.J., Dayan P. // Mach. Learn. 1992. V. 8. № 3. P. 279. https://doi.org/10.1007/BF00992698
  30. Lillicrap T.P., Hunt J.J., Pritzel A., Heess N., Erez T., Tassa Y., Silver D., Wierstra D. Continuous Control with Deep Reinforcement Learning; https://arxiv.org/ abs/1509.02971.pdf.
  31. Alhazmi K., Albalawi F., Sarathy S.M. // Chem. Eng. J. 2022. V. 428. P. 130993. https://doi.org/10.1016/j.cej.2021.130993
  32. Zhou Z., Li X., Zare R.N. // ACS Cent. Sci. 2017. V. 3. № 12. P. 1337. https://doi.org/10.1021/acscentsci.7b00492
  33. Engel T., Ertl G. // Elementary Steps in the Catalytic Oxidation of Carbon Monoxide on Platinum Metals. Munchen: Elsevier, 1979. P. 43.
  34. Chorkendorff I., Niemantsverdriet J.W. // Concepts of Modern Catalysis and Kinetics. Weinheim: John Wiley & Sons, 2017. P. 66.
  35. Libuda J., Meusel I., Hoffmann J., Hartmann J., Piccolo L., Henry C., Freund H.-J. // J. Chem. Phys. 2001. V. 114. № 10. P. 4669.
  36. Nelder J.A., Mead R. // The Comput. J. 1965. V. 7. № 4. P. 308. https://doi.org/10.1093/comjnl/7.4.308
  37. Unni M., Hudgins R., Silveston P. // Can. J. Chem. Eng. 1973. V. 51. № 6. P. 623. https://doi.org/10.1002/cjce.5450510601
  38. Abdul-Kareem H.K., Silveston P., Hudgins R. // Chem. Eng. Sci. 1980. V. 35. № 10. P. 2077. https://doi.org/10.1016/0009-2509(80)85029-9
  39. Abdul-Kareem H.K., Hudgins R., Silveston P. // Chem. Eng. Sci. 1980. V. 35. № 10. P. 2085. https://doi.org/10.1016/0009-2509(80)85030-5
  40. Zhou X., Barshad Y., Gulari E. // Chem. Eng. Sci. 1986. V. 41. № 5. P. 1277. https://doi.org/10.1016/0009-2509(86)87100-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (118KB)
3.

Download (195KB)
4.

Download (94KB)
5.

Download (220KB)

Copyright (c) 2023 М.С. Лифарь, А.А. Терещенко, А.Н. Булгаков, А.А. Гуда, С.А. Гуда, А.В. Солдатов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies