3D Simulation of Electronic Exchange between an Atomic Particle and a Defect-Containing Surface
- Authors: Klimov N.E.1, Gainullin I.K.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Physics
- Issue: No 1 (2023)
- Pages: 80-85
- Section: Articles
- URL: https://journals.rcsi.science/1028-0960/article/view/137663
- DOI: https://doi.org/10.31857/S1028096023010120
- EDN: https://elibrary.ru/BLGDKP
- ID: 137663
Cite item
Abstract
The electronic exchange between an atomic particle (a charged ion or a neutral atom) and a metal surface containing a defect in the form of an atomic step has been studied. The research tool is three-dimensional computer modeling. A model static problem is considered when the particle is fixed above the surface. Calculated data are obtained on the dependence on the distance to the surface and the lateral position of the particle of the main parameters of charge exchange: the energy position and the width of the particle level (which determines the efficiency of the electronic exchange).
About the authors
N. E. Klimov
Lomonosov Moscow State University, Faculty of Physics
Email: ivan.gainullin@physics.msu.ru
Russia, 119992, Moscow
I. K. Gainullin
Lomonosov Moscow State University, Faculty of Physics
Author for correspondence.
Email: ivan.gainullin@physics.msu.ru
Russia, 119992, Moscow
References
- Martynenko Yu.V. // Sov. Phys. Solid State. 1964. V. 3529. P. 2003.
- Yurasova V.E., Chernysh V.S., Kuvakin M.V., Shelyakin L.B. // JETP Lett. 1975. V. 21. № 3. P. 79.
- Los J., Geerlings J.J.C. // Phys. Rep. 1990. V. 190. P. 133.
- Karaseov P.A., Karabeshkin K.V., Titov A.I., Shilov V.B., Ermolaeva G.M., Maslov V.G., Orlova A.O. // Semiconductors. 2014. V. 48. № 4. P. 446.
- Andrianova N.N., Borisov A.M., Mashkova E.S., Shulga V.I. // J. Clinical Invest. 2016. V. 10. P. 412.
- Zykova E.Y., Khaidarov A.A., Ivanenko I.P., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2012. V. 6. P. 877.
- Gainullin I.K. // Surf. Sci. 2019. V. 681. P. 158.
- Gainullin I.K. // Physics-Uspekhi. 2020. V. 63. № 9.
- Gainullin I.K. // Surf. Sci. 2018. V. 677. P. 324.
- Usman E.Yu., Urazgil’din I.F., Borisov A.G., Gauyacq J.P. // Phys. Rev. B. 2001. V. 64. P. 205405.
- Amanbaev E.R., Shestakov D.K., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2009. V. 3. P. 865.
- Gainullin I.K. // Phys. Rev. A. 2019. V. 100. P. 032712.
- Gainullin I.K. // Moscow University Phys. Bull. 2019. V. 74. P. 585.
- Obreshkov B., Thumm U. // Phys. Rev. A. 2013. V. 87.
- Winter H. // Phys. Rep. 2002. V. 367. P. 387.
- Cohen J.S., Fiorentini G. // Phys. Rev. A. 1986. V. 33. P. 1590.
- Ermoshin V.A., Kazansky A.K. // Phys. Lett. A. 1996. V. 218. P. 99.
- Gainullin I.K. // Comp. Phys. Commun. 2017. V. 210. P. 72.
- Gainullin I.K., Sonkin M.A. // Comp. Phys. Commun. 2015. V. 188. P. 68.
- Gainullin I.K. // Phys. Rev. A. 2017. V. 95. P. 052705.
- Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710.
- Jennings P.J., Jones R. O., Weinert M. // Phys. Rev. B. 1988. V. 37. P. 6113.
- Gainullin I.K., Urazgildin I.F. // Phys. Rev. B. 2006. V. 74. P. 205403.
- Amanbaev E.R., Gainullin I.K., Zykova E.Yu., Urazgildin I.F. // Thin Solid Films. 2011. V. 519. P. 4737.
Supplementary files
