Multiple sclerosis-modifying therapies: view in the future

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Multiple sclerosis is a chronic disabling disease of the central nervous system, afflicting mainly young people. The efforts of investigators around the world are aimed at creating highly effective disease-modifying therapies that have a favorable safety and tolerance profile. The review briefly lists the disease-modifying therapies currently registered in the Russian Federation. Information is provided on the international clinical trial phases II and III of disease-modifying therapies, international nonproprietary products and/or active substance molecules, intended mechanisms of action and indicators of their effectiveness and safety. The article describes disease-modifying therapies that have been approved by the FDA and that may be available for Russian neurologists in the near future for the treatment of multiple sclerosis. The treatment possibilities of drugs used in Russia for other indications than multiple sclerosis are discussed.

About the authors

Anna N. Belova

Privolzhsky Research Medical University

Email: anbelova@mail.ru
ORCID iD: 0000-0001-9719-6772
SPIN-code: 3084-3096
ResearcherId: T-2048-2019

MD, PhD, Professor, Head of Department of Functional Diagnostics

Russian Federation, 603155, Nizhnij Novgorod, Verhne-Volzhskaya embankment, 18

Gennadij E. Sheiko

Privolzhsky Research Medical University

Author for correspondence.
Email: sheikogennadii@yandex.ru
ORCID iD: 0000-0003-0402-7430
SPIN-code: 8575-1319
ResearcherId: T-3280-2020

к.м.н., ассистент кафедры медицинской реабилитации ФГБОУ ВО «ПИМУ» Минздрав России

Russian Federation, 603155, Nizhnij Novgorod, Verhne-Volzhskaya embankment, 18

Evgeniya M. Belova

City clinical hospital No. 3 (Nizhnij Novgorod geriatric center)

Email: anbelova@mail.ru
Russian Federation, 603155, Nizhnij Novgorod, Verhne-Volzhskaya embankment, 21

References

  1. Бойко А.Н., Хачанова Н.В., Мельников М.В. и др. Новые направления иммунокоррекции при рассеянном склерозе. Ж. неврол. и психиатрии им. C.C. Корсакова. 2020; 120 (2): 103–109. [Boyko A.N., Khachanova N.V., Melnikov M.V. et al. New directions of immunocorrection in multiple sclerosis. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2020; 120 (2): 103–109. (In Russ.)] doi: 10.17116/jnevro2020120021103.
  2. Gasperoni F., Turini P., Agostinelli E. A novel comprehensive paradigm for the etiopathogenesis of multiple sclerosis: therapeutic approaches and future perspectives on its treatment. Amino Acids. 2019; 51 (5): 745–759. doi: 10.1007/s00726-019-02718-1.
  3. Gholamzad M., Ebtekar M., Ardestani M.S. et al. A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflamm. Res. 2019; 68 (1): 25–38. doi: 10.1007/s00011-018-1185-0.
  4. Шмидт Т.Е., Яхно Н.Н. Рассеянный склероз. Руководство для врачей, 6-е изд. М.: МЕДпресс-информ. 2017; 280 с. [Schmidt T.E., Yakhno N.N. Rasseyannyj skleroz. Rukovodstvo dlya vrachej. (Multiple sclerosis. Guide for doctors.) 6th ed. M.: Medpress-inform. 2017; 280 p. (In Russ.)]
  5. Nally F.K., Santi C.D., McCoy C.E. Nanomodulation of macrophages in multiple sclerosis. Cells. 2019; 8 (6): 543. doi: 10.3390/cells8060543.
  6. Filippi M., Preziosa P., Rocca M.A. Multiple sclerosis. Handb. Clin. Neurol. 2016; 135: 399–423. doi: 10.1016/B978-0-444-53485-9.00020-9.
  7. O’Connor P.W. Reason for hope: The advent of disease-modifying therapies in multiple sclerosis. CMAJ. 2000; 162 (1): 83–84.
  8. Polman C.H., Uitdehaag B.M.J. Drug treatment of multiple sclerosis. BMJ. 2000; 321 (7259): 490–494. doi: 10.1136/bmj.321.7259.490.
  9. Шмидт Т.Е. Лечение рассеянного склероза. Русский мед. ж. 2001; 9 (7–8): 322–328. [Schmidt T.E. Treatment of multiple sclerosis. Russkij medicinskij zhurnal. 2001; 9 (7–8): 322–328. (In Russ.)]
  10. Nixon R., Bergvall N., Tomic D. et al. No evidence of disease activity: Indirect comparisons of oral therapies for the treatment of relapsing — remitting multiple sclerosis. Adv. Ther. 2014; 31 (11): 1134–1154. doi: 10.1007/s12325-014-0167-z.
  11. Giovannoni G., Bermel R., Phillips T., Rudick R. A brief history of NEDA. Mult. Scler. Relat. Disord. 2018; 20: 228–230. doi: 10.1016/j.msard.2017.07.011.
  12. Бойко А.Н., Гусева М.Р., Хачанова Н.В., Гусев Е.И. Вопросы современной терминологии при рассеянном склерозе. Ж. неврол. и психиатрии им. С.С. Корсакова. Спецвыпуски. 2018; 118 (8): 121–127. [Boyko A.N., Guseva M.R., Khachanova N.V., Gusev E.I. Issues of the current terminology in multiple sclerosis. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2018; 118 (8): 121–127. (In Russ.)] doi: 10.17116/jnevro2018118082121.
  13. Parks N.E., Flanagan E.P., Lucchinetti C.F., Wingerchuk D.M. NEDA treatment target? No evident disease activity as an actionable outcome in practice. J. Neurol. Sci. 2017; 383: 31–34. doi: 10.1016/j.jns.2017.10.015.
  14. Алифирова В.М., Бисага Г.Н., Бойко А.Н. и др. Клинические рекомендации по применению препарата алемтузумаб (лемтрада). Ж. неврол. и психиатрии им. С.С. Корсакова. Спецвыпуски. 2017; 117 (2): 115–126. [Alifirova V.M., Bisaga G.N., Boyko A.N. et al. Clinical recommendations on the use of alemtuzumab (lemtrada). Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2017; 117 (2): 115–126. (In Russ.)] doi: 10.17116/jnevro201711722115-126.
  15. Selmaj K., Li D.K., Hartung H.P. et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013; 12 (8): 756–767. doi: 10.1016/S1474-4422(13)70102-9.
  16. Kappos L., Li D.K., Stüve O. et al. Safety and efficacy of Siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: Dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol. 2016; 73 (9): 1089–1098. doi: 10.1001/jamaneurol.2016.1451.
  17. Kappos L., Bar-Or A., Cree B.A.C. et al.; EXPAND Clinical Investigators. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018; 391 (10127): 1263–1273. doi: 10.1016/S0140-6736(18)30475-6. Erratum in: Lancet. 2018; 392 (10160): 2170.
  18. Wu Q., Mills E.A., Wang Q. et al.; AMS04 Study Group. Siponimod enriches regulatory T and B lymphocytes in secondary progressive multiple sclerosis. JCI Insight. 2020; 5 (3): pii 134251. doi: 10.1172/jci.insight.134251.
  19. Palte M.J., Wehr A., Tawa M. et al. Improving the gastrointestinal tolerability of Fumaric Acid Esters: Early findings on gastrointestinal events with Diroximel Fumarate in patients with relapsing-remitting multiple sclerosis from the phase 3, open-label EVOLVE-MS-1 study. Adv. Ther. 2019; 36 (11): 3154–3165. doi: 10.1007/s12325-019-01085-3.
  20. Naismith R.T., Wolinsky J.S., Wundes A. et al. Diroximel Fumarate (DRF) in patients with relapsing-remitting multiple sclerosis: Interim safety and efficacy results from the phase 3 EVOLVE-MS-1 study. Mult. Scler. 2019: 1352458519881761. doi: 10.1177/1352458519881761.
  21. Naismith R.T., Wundes A., Ziemssen T. et al.; EVOLVE-MS-2 Study Group. Diroximel Fumarate demonstrates an improved gastrointestinal tolerability profile compared with Dimethyl Fumarate in patients with relapsing-remitting multiple sclerosis: Results from the randomized, double-blind, phase III EVOLVE-MS-2 study. CNS Drugs. 2020; 34 (2): 185–196. doi: 10.1007/s40263-020-00700-0.
  22. Milo R. Therapies for multiple sclerosis targeting B cells. Croat. Med. J. 2019; 60 (2): 87–98. doi: 10.3325/cmj.2019.60.87.
  23. Вотинцева М.В., Петров А.М., Столяров И.Д. Препараты на основе моноклональных антител: настоящее и будущее в лечении рассеянного склероза (по материалам 32-го Конгресса Европейского комитета по лечению и исследованию рассеянного склероза — ECTRIMS). Анн. клин. и эксперим. неврол. 2017; 11 (2): 83–88. [Votintseva M.V., Petrov A.M., Stolyarov I.D. Monoclonal antibodies: present and future in the treatment of multiple sclerosis (Based on the Proceedings of the 32nd Congress of the European Committee for Treatment and Research in Multiple Sclerosis — ECTRIMS). Annaly klinicheskoj i eksperimental’noj nevrologii. 2017; 11 (2): 83–88. (In Russ.)] doi: 10.18454/ACEN.2017.2.12.
  24. Franks S.E., Getahun A., Hogarth P.M. et al. Targeting B cells in treatment of autoimmunity. Curr. Opin. Immunol. 2016; 43; 39–45. doi: 10.1016/j.coi.2016.09.003.
  25. Bar-Or A., Grove R.A., Austin D.J. et al. Subcutaneous Ofatumumab in patients with relapsing-remitting multiple sclerosis: The MIRROR study. Neurology. 2018; 90 (20): e1805–e1814. doi: 10.1212/WNL.0000000000005516.
  26. Sharman J.P., Farber C.M., Mahadevan D. et al. Ublituximab (TG-1101), a novel glycoengineered anti-CD20 antibody, in combination with ibrutinib is safe and highly active in patients with relapsed and/or refractory chronic lymphocytic leukaemia: results of a phase 2 trial. Br. J. Haematol. 2017; 176 (3): 412–420. doi: 10.1111/bjh.14447.
  27. Fox E., Lovett-Racke A., Gormley M. et al. Final results of a placebo controlled, phase 2 multicenter study of Ublituximab (UTX), a novel glycoengineered anti-CD20 monoclonal antibody (mAb), in patients with relapsing forms of multiple sclerosis (RMS). Mult. Scler. 2018; 24; 87.
  28. Pouzol L., Piali L., Bernard C.C.A. et al. Therapeutic potential of Ponesimod alone and in combination with Dimethyl Fumarate in experimental models of multiple sclerosis. Innov. Clin. Neurosci. 2019; 16 (3–4): 22–30.
  29. Dash R.P., Rais R., Srinivas N.R. Ponesimod, a selective sphingosine 1-phosphate (S1P1) receptor modulator for autoimmune diseases: review of clinical pharmacokinetics and drug disposition. Xenobiotica. 2018; 48 (5): 442–451. doi: 10.1080/00498254.2017.1329568.
  30. Janssen подала заявление на регистрацию препарата понесимод. ТАСС. https://tass.ru/press-relizy/7900313 (дата обращения: 04.03.2020). [Janssen filed an application for registration of the drug ponesimod. TASS. https://tass.ru/press-relizy/790031 (access date: 04.03.2020). (In Russ.)]
  31. Comi G., Kappos L., Selmaj K.W. et al.; SUNBEAM Study Investigators. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol. 2019; 18 (11): 1009–1020. doi: 10.1016/S1474-4422(19)30239-X.
  32. Cohen J.A., Comi G., Selmaj K.W. et al. RADIANCE trial investigators. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 2019; 18 (11): 1021–1033. doi: 10.1016/S1474-4422(19)30238-8.
  33. Rasche L., Paul F. Ozanimod for the treatment of relapsing remitting multiple sclerosis. Expert Opin. Pharmacother. 2018; 19 (18): 2073–2086. doi: 10.1080/14656566.2018.1540592.
  34. Vermersch P., Benrabah R., Schmidt N. et al. Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study. BMC Neurol. 2012; 12: 36. doi: 10.1186/1471-2377-12-36.
  35. Alankus Y., Grenningloh R., Haselmayer P. et al. BTK inhibition prevents inflammatory macrophage differentiation: a potential role in MS. Mult. Scler. 2018; 24; 264.
  36. Montalban X., Arnold D.L., Weber M.S. et al.; Evobrutinib Phase 2 Study Group. Primary analysis of a randomised, placebocontrolled, phase 2 study of the Bruton’s tyrosine kinase inhibitor evobrutinib (M2951) in patients with relapsing multiple sclerosis. Mult. Scler. 2018; 24: 984–985.
  37. Cadavid D., Mellion M., Hupperts R. et al.; SYNERGY study investigators. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2019; 18 (9): 845–856.
  38. Бойко О.В., Бойко А.Н., Яковлев П.А. и др. Результаты I фазы клинического исследования моноклонального антитела против CD20 (BCD-132): фармакокинетика, фармакодинамика и безопасность. Ж. неврол. и психиатрии им. С.С. Корсакова. Спецвыпуски. 2019; 119 (10): 87–95. [Boyko O.V., Boyko A.N., Yakovlev P.A. et al. Results of a phase 1 clinical study of anti-CD20 monoclonal antibody (BCD-132): pharmacokinetics, pharmacodynamics and safety. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2019; 119 (10): 87–95 (In Russ.)] doi: 10.17116/jnevro20191191087.
  39. Perron H., Geny C., Laurent A. et al. Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res. Virol. 1989; 140 (6): 551–561. doi: 10.1016/s0923-2516(89)80141-4.
  40. Emmer A., Staege M.S., Kornhuber M.E. The retrovirus superantigen hypothesis of multiple sclerosis. Cell. Mol. Neurobiol. 2014; 34 (8): 1087–1096. doi: 10.1007/s10571-014-0100-7.
  41. Hon G.M., Erasmus R.T., Matsha T. Multiple sclerosis associated retrovirus and related human endogenous retrovirus-W in patients with multiple sclerosis: a literature review. J. Neuroimmunol. 2013; 263 (1–2): 8–12. doi: 10.1016/j.jneuroim.2013.08.005.
  42. Derfuss T., Curtin F., Guebelin C. et al. A phase IIa randomised clinical study of GNbAC1, a humanised monoclonal antibody against the envelope protein of multiple sclerosis-associated endogenous retrovirus in multiple sclerosis patients. Mult. Scler. 2015; 21 (7): 885–893. doi: 10.1177/1352458514554052.
  43. Захарова М.Н., Аскарова Л.Ш., Бакулин И.С. и др. Современные принципы терапии рассеянного склероза. М.: Буки-Веди. 2017; 563–580. [Zaharova M.N., Askarova L.Sh., Bakulin I.S. et al. Sovremennye principy terapii rasseyannogo skleroza. (Modern principles of multiple sclerosis therapy.) M.: Buki-Vedi. 2017; 563–580. (In Russ.)]
  44. Ciotti J.R., Cross A.H. Disease-modifying treatment in progressive multiple sclerosis. Curr. Treat. Options Neurol. 2018; 20 (5): 12. doi: 10.1007/s11940-018-0496-3.
  45. Fox R.J., Coffey C.S., Conwit R. et al.; NN102/SPRINT-MS trial investigators. Phase 2 trial of Ibudilast in progressive multiple sclerosis. N. Engl. J. Med. 2018; 379 (9): 846–855. doi: 10.1056/NEJMoa1803583.
  46. Macaron G., Ontaneda D. Diagnosis and management of progressive multiple sclerosis. Biomedicines. 2019; 7 (3): 56. doi: 10.3390/biomedicines7030056.
  47. Aimard G., Girard P.F., Raveau J. Multiple sclerosis and the autoimmunization process. Treatment by antimitotics. Lyon Medical. 1966; 215 (6): 345–352.
  48. Patti F., Fermo S.L. Lights and shadows of Cyclophosphamide in the treatment of multiple sclerosis. Autoimmune Dis. 2011; 2011: 961702. doi: 10.4061/2011/961702.
  49. Brochet B., Deloire M.S.A., Perez P. et al.; PROMESS study investigators. Double-blind controlled randomized trial of Cyclophosphamide versus Methylprednisolone in secondary progressive multiple sclerosis. PLoS One. 2017; 12 (1): e0168834. doi: 10.1371/journal.pone.0168834.
  50. Gladstone D.E., Zamkoff K.W., Krupp L. et al. High-dose Cyclophosphamide for moderate to severe refractory multiple sclerosis. Arch. Neurol. 2006; 63 (10): 1388–1393. doi: 10.1001/archneur.63.10.noc60076.
  51. Krishnan C., Kaplin A.I., Brodsky R.A. et al. Reduction of disease activity and disability with high-dose Cyclophosphamide in patients with aggressive multiple sclerosis. Arch. Neurol. 2008; 65 (8): 1044–1051. doi: 10.1001/archneurol.65.8.noc80042.
  52. Ineichen B.V., Moridi T., Granberg T. et al. Rituximab treatment for multiple sclerosis. Mult. Scler. 2020; 26 (2): 137–152. doi: 10.1177/1352458519858604.
  53. Cree B., Lamb S., Chin A. et al. Tolerability and effects of rituximab (anti-CD20 antibody) in neuromyelitis optica (NMO) and rapidly worsening multiple sclerosis (MS). Neurology. 2004; 62 (Suppl. 5): A492.
  54. Hauser S.L., Waubant E., Arnold D.L. et al.; HERMES Trial Group. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 2008; 358 (7): 676–688. doi: 10.1056/NEJMoa0706383.
  55. Salzer J., Svenningsson R., Alping P. et al. Rituximab in multiple sclerosis: A retrospective observational study on safety and efficacy. Neurology. 2016; 87 (20): 2074–2081. doi: 10.1212/WNL.0000000000003331.
  56. Vartzelis G., Maritsi D., Nikolaidou M. et al. Rituximab as rescue therapy for aggressive pediatric multiple sclerosis. Case Rep. Pediatr. 2019; 2019: 8731613. doi: 10.1155/2019/8731613.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Belova A.N., Sheiko G.E., Belova E.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies