MULTISENSORY INTEGRATION AND SYSTEM PSYCHONEUROLOGY


Cite item

Full Text

Abstract

The article discusses the mechanisms underlying the integration of afferent information into the structures of the Central Nervous System (CNS), on the basis of which a multisensory model (cross-modal afferentation) is developed. It is emphasized that such multisensory integration and the resulting response often lead to more selective and rapid reactions than the reaction caused by perception in the only one modality. However, the combined use of multisensory afferentations may lead to «conflict between different modalities». Using the concept of «human connectome» explains much better the processes occurring in the structures of the CNS, including multisensory integration, than schemes previously built on anatomical data. A key element in determining the type of the individual’s response to changing environmental conditions is the equally dynamic neuronal system of relations. This communication system depends on both external information and internal factors, including neuronal oscillations. These oscillations trigger the processes that result in the generation of new ideas (creative thinking), motivation to perform certain actions, and under certain conditions (including genetically determined) - the emergence of various types of neuropsychiatric disorders, including illusions, hallucinations, delusions (syndromes of Capgrás, Fregoli, intermetamorphosis, syndrome of own twins).

About the authors

Igor V Damulin

The first I.M. Sechenov University of Health Ministry

Email: damulin@mmascience.ru
department of nervous diseases and neurosurgery 119021, Моscow, Possolimo street, 11/1

References

  1. Baldassarre A., Lewis C.M., Committeri G. et al. Individual variability in functional connectivity predicts performance of a perceptual task // Proceedings of the National Academy of Sciences. 2012. Vol. 109(9). P. 3516-3521. doi: 10.1073/pnas.1113148109
  2. Bremner A.J., Holmes N.P., Spence C. The development of multisensory representations of the body and of the space around the body. /In: Multisensory Development. Ed. by A.J. Bremner, D.J. Lewkowicz, C. Spence. Сh.5. Oxford: Oxford University Press, 2012. P.113-136.
  3. Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems // Nature Reviews Neuroscience. 2009. Vol. 10(3). P. 186-198. doi: 10.1038/nrn2575
  4. Collin G., van den Heuvel M.P. The ontogeny of the human connectome // The Neuroscientist. 2013. Vol. 19(6). P. 616-628. doi: 10.1177/1073858413503712
  5. Facchini S., Aglioti S.M. Short term light deprivation increases tactile spatial acuity in humans // Neurology. 2003. Vol. 60(12). P. 1998-1999. https://doi.org/10.1212/01.wnl.0000068026.15208.d0
  6. Finn E.S., Shen X., Scheinost D. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity // Nature Neuroscience. 2015. Vol. 18(11). P. 1664-1671. doi: 10.1038/nn.4135
  7. Hahn A., Kranz G.S., Sladky R. et al. Individual diversity of functional brain network economy // Brain Connectivity. 2015. Vol. 5(3). P. 156-165. doi: 10.1089/brain.2014.0306
  8. Hearne L.J., Mattingley J.B., Cocchi L. Functional brain networks related to individual differences in human intelligence at rest // Scientific Reports. 2016. Vol. 6. P. 32328. doi: 10.1038/srep32328
  9. Lamichhane B., Dhamala M. The salience network and its functional architecture in a perceptual decision: an effective connectivity study // Brain Connectivity. 2015. Vol. 5(6). P. 362-370. https://doi.org/10.1089/brain.2014.0282
  10. Laurienti P.J., Hugenschmidt C.E. Multisensory processes in old age. New insights into the development of multisensory perception. In: Multisensory Development [Ed. by A.J. Bremner, D.J. Lewkowicz, C. Spence]. Сh.11. Oxford: Oxford University Press, 2012. P. 251-270.
  11. Lewkowicz D.J. The unexpected effects of experience on the development of multisensory perception in primates. In: Multisensory Development. [Ed. by A.J. Bremner, D.J. Lewkowicz, C. Spence]. Сh.5. Oxford: Oxford University Press, 2012. P. 159-182.
  12. Mears D., Pollard H.B. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease // Journal of Neuroscience Research. 2016. Vol. 94(6). P. 590-605. doi: 10.1002/jnr.23705
  13. Mesulam M.-M. From sensation to cognition // Brain. 1998. Vol. 121(6). P. 1013-1052. https://doi.org/10.1093/brain/121.6.1013
  14. Mueller S., Wang D., Fox M.D. et al. Individual variability in functional connectivity architecture of the human brain // Neuron. 2013. Vol. 77(3). P. 586-595. doi: 10.1016/j.neuron.2012.12.028
  15. Parks E.L., Madden D.J. Brain connectivity and visual attention // Brain Connectivity. 2013. Vol. 3(4). P. 317-338. https://doi.org/10.1089/brain.2012.0139
  16. Petersen S.E., Sporns O. Brain networks and cognitive architectures // Neuron. 2015. Vol. 88(1). P. 207-219. doi: 10.1016/j.neuron.2015.09.027
  17. Ramezani M., Abolmaesumi P., Marble K. et al. Fusion analysis of functional MRI data for classification of individuals based on patterns of activation // Brain Imaging and Behavior. 2014. Vol. 9(2). P. 149-161. doi: 10.1007/s11682-014-9292-1
  18. Reineberg A.E., Banich M.T. Functional connectivity at rest is sensitive to individual differences in executive function: A network analysis // Human Brain Mapping. 2016. Vol. 37(8). P. 2959-2975. doi: 10.1002/hbm.23219
  19. Roder B. Sensory deprivation and the development of multisensory integration. /In: Multisensory Development [Ed. by A.J. Bremner, D.J. Lewkowicz, C. Spence]. Сh.13. Oxford: Oxford University Press, 2012. P.301-322.
  20. Sepulcre J., Sabuncu M.R., Goni J. Hubs and Pathways. In: Brain Mapping An Encyclopedic Reference. A.W. Toga (Ed.-in-Chief). Vol.2. London etc.: Elsevier Inc., 2015. P. 441-447.
  21. Stevens W.D., Spreng R.N. Resting-state functional connectivity MRI reveals active processes central to cognition // Wiley Interdisciplinary Reviews: Cognitive Science. 2014. Vol. 5(2). P. 233-245. doi: 10.1002/wcs.1275
  22. Swanson L.W. Basic Principles of Mammalian CNS Systems: Nervous System Organization: Connectomics and the Connectome. In: Neuroscience in the 21st Century: From Basic to Clinical. [Ed. by D.W. Pfaff]. Сh.44. New York etc.: Springer, 2013. P. 1385-1420.
  23. Treisman A. Feature binding, attention and object perception // Philosophical Transactions of the Royal Society B: Biological Sciences. 1998. Vol. 353(1373). P. 1295-1306. https://doi.org/10.1098/rstb.1998.0284
  24. Trobe J.D. The Neurology of Vision. Oxford etc.: Oxford University Press, 2001. 451 p.
  25. Vaidya C.J., Gordon E.M. Phenotypic variability in resting-state functional connectivity: current status // Brain Connectivity. 2013. Vol. 3(2). P. 99-120. doi: 10.1089/brain.2012.0110
  26. van den Heuvel M.P., Sporns O. Network hubs in the human brain // Trends in Cognitive Sciences. 2013. Vol. 17(12). P. 683-696. doi: 10.1016/j.tics.2013.09.012
  27. van den Heuvel M.P., Bullmore E.T., Sporns O. Comparative connectomics // Trends in Cognitive Sciences. 2016. Vol. 20(5). P. 345-361. doi: 10.1016/j.tics.2016.03.001
  28. Villringer A. fMRI of the Sensorimotor System. In: fMRI: From Nuclear Spins to Brain Functions. [K. Uludağ, K. Uğurbil, L. Berliner (eds.)]. New York etc.: Springer, 2015. Ch.17. P.509-521.
  29. Wallace M.T., Ghose D., Nidiffer A.R. et al. Development of multisensory integration in subcortical and cortical brain networks. In: Multisensory Development [Ed. by A.J. Bremner, D.J. Lewkowicz, C. Spence]. Сh.14. Oxford: Oxford University Press, 2012. P. 325-341.

Copyright (c) 2019 Damulin I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies