Quantum chemical simulations of titanium dioxide nanotubes used for photocatalytic water splitting
- Authors: Lisovski O.1, Piskunov S.1, Zhukovskii Y.F.1, Bocharov D.1,2
-
Affiliations:
- University of Latvia, Institute of Solid State Physics
- Transport and Telecommunication Institute
- Issue: Vol 11, No 1 (2017)
- Pages: 78-86
- Section: Article
- URL: https://journals.rcsi.science/1027-4510/article/view/190723
- DOI: https://doi.org/10.1134/S1027451016050335
- ID: 190723
Cite item
Abstract
Titanium dioxide nanotubes (NTs) built from various initial 2D models of TiO2 (a promising catalyst for water splitting) are investigated via density functional theory using the B3LYP hybrid exchange-correlation functional in the localized basis set of a linear combination of atomic orbitals. For TiO2 NTs (eight different types of morphology) created from four initial 2D structures, full geometry optimization is performed and the main energy parameters, such as the band gap width, energy positions of the valence band top and the conduction band bottom, and NT formation and strain energy, are calculated. Analysis of the NT strain and formation energies enables us to choose their most stable configuration, which can further be employed to simulate NTs doped with impurity atoms capable of serving as efficient centers for the photocatalytic dissociation of water molecules.
About the authors
O. Lisovski
University of Latvia, Institute of Solid State Physics
Email: bocharov@latnet.lv
Latvia, Riga, LV-1063
S. Piskunov
University of Latvia, Institute of Solid State Physics
Email: bocharov@latnet.lv
Latvia, Riga, LV-1063
Yu. F. Zhukovskii
University of Latvia, Institute of Solid State Physics
Email: bocharov@latnet.lv
Latvia, Riga, LV-1063
D. Bocharov
University of Latvia, Institute of Solid State Physics; Transport and Telecommunication Institute
Author for correspondence.
Email: bocharov@latnet.lv
Latvia, Riga, LV-1063; Riga, LV-1019
Supplementary files
