Structure Changes in Carbon Films Prepared by Electron-Beam-Assisted Deposition


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Carbon films 50–180 nm thick on nickel substrates are fabricated by the ion sputtering of graphite and the deposition of heavy hydrocarbons from the gas phase with simultaneous electron irradiation. Irradiation results in the formation of bonds in carbon films due to the sp and sp3 hybridization of orbitals (sp and sp3 bonds), mainly, sp3 bonds. A fraction of these bonds does not change with growth in the electron energy; it increases three-fold with a reduction in the temperature and an increase in the electron current density. Electron irradiation enhances the film microhardness which exceeds 12 GPa. The films, prepared by heavy hydrocarbon deposition, contain CHn bonds and a small fraction of sp3 bonds. The maximum value of the microhardness of the hydrocarbon films is no more than 4.5 GPa. The analysis of the proposed model of the kinetics of forming different allotropic phases in a carbon film to be deposited shows that a temperature reduction changes the specific volume of an atom in the lattice, while under conditions of simultaneous electron irradiation, it appreciably increases the content of the phase with sp3 bonds. The effect of spi-bond breakage during electron-beam-assisted deposition weakly depends on the electron energy. The weak excitations of electrons of carbon atoms can also result in the formation of sp3 bonds and increases their concentration with growth in the electron current density.

About the authors

S. N. Korshunov

National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: Korshunov_SN@nrcki.ru
Russian Federation, Moscow, 123182

A. M. Lebedev

National Research Centre “Kurchatov Institute”

Email: Martyn907@yandex.ru
Russian Federation, Moscow, 123182

Yu. V. Martynenko

National Research Centre “Kurchatov Institute”; National Research Nuclear University “MEPhI”

Author for correspondence.
Email: Martyn907@yandex.ru
Russian Federation, Moscow, 123182; Moscow, 115409

N. Yu. Svechnikov

National Research Centre “Kurchatov Institute”

Email: Martyn907@yandex.ru
Russian Federation, Moscow, 123182

I. D. Skorlupkin

National Research Centre “Kurchatov Institute”

Email: Martyn907@yandex.ru
Russian Federation, Moscow, 123182

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.