Hydrogen-Permeability of Titanium-Nitride (TiN) Coatings Obtained via the Plasma-Immersion Ion Implantation of Titanium and TiN Vacuum-Arc Deposition on Zr−1%Nb Alloy


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The surface of Zr‒1%Nb zirconium-alloy samples is treated with titanium via plasma-immersion ion implantation (PIII). Afterward, TiN coatings are deposited onto the implanted and initial samples by means of vacuum-arc deposition (VAD). Before and after each of the treatments mentioned above, changes in the hydrogen sorption rate, depth distribution of elements, and surface topography are investigated. It is found that separately performed VAD and PIII reduce the hydrogen sorption rate by a factor of 2‒15. At the same time, a combination of operations so that PIII is carried out before VAD decreases the sorption rate by one‒two orders of magnitude. It is revealed that the key parameter of the aforementioned methods affecting hydrogen permeability, the depth distribution of elements, and the surface topography is the bias value applied to the sample (substrate). In the case of our setup, the optimum biases of PIII and VAD are‒1500 and‒150 V, respectively.

About the authors

Le Zhang

Tomsk Polytechnic University

Author for correspondence.
Email: 304060488@qq.com
Russian Federation, Tomsk, 634050

N. N. Nikitenkov

Tomsk Polytechnic University

Email: 304060488@qq.com
Russian Federation, Tomsk, 634050

A. N. Sutygina

Tomsk Polytechnic University

Email: 304060488@qq.com
Russian Federation, Tomsk, 634050

E. B. Kashkarov

Tomsk Polytechnic University

Email: 304060488@qq.com
Russian Federation, Tomsk, 634050

V. S. Sypchenko

Tomsk Polytechnic University

Email: 304060488@qq.com
Russian Federation, Tomsk, 634050

M. N. Babihina

Tomsk Polytechnic University

Email: 304060488@qq.com
Russian Federation, Tomsk, 634050

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.