DETERMINATION OF INCUBATION CHARACTERISTICS OF THE HIGH RATE PLASTIC DEFORMATION PROCESS OF MATERIALS DURING IMPACT TESTS OF A CYLINDRICAL SAMPLE ON A RIGID ANVIL
- 作者: Lukashov R.V.1,2, Volkov G.A.1,2, Ostropiko E.S.1,2, Gruzdkov A.A.1,2, Petrov Y.V.1,2
-
隶属关系:
- Saint Petersburg State University
- Institute for Problems in Mechanical Engineering of the RAS
- 期: 编号 6 (2025)
- 页面: 244–260
- 栏目: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/361328
- DOI: https://doi.org/10.7868/S3034543X25060133
- ID: 361328
如何引用文章
详细
作者简介
R. Lukashov
Saint Petersburg State University; Institute for Problems in Mechanical Engineering of the RAS
Email: st069218@student.spbu.ru
Saint Petersburg, Russia; Saint Petersburg, Russia
G. Volkov
Saint Petersburg State University; Institute for Problems in Mechanical Engineering of the RAS
Email: g.volkov@spbu.ru
Saint Petersburg, Russia; Saint Petersburg, Russia
E. Ostropiko
Saint Petersburg State University; Institute for Problems in Mechanical Engineering of the RAS
Email: e.ostropiko@spbu.ru
Saint Petersburg, Russia; Saint Petersburg, Russia
A. Gruzdkov
Saint Petersburg State University; Institute for Problems in Mechanical Engineering of the RAS
Email: gruzdkov@mail.ru
Saint Petersburg, Russia; Saint Petersburg, Russia
Yu. Petrov
Saint Petersburg State University; Institute for Problems in Mechanical Engineering of the RAS
Email: y.v.petrov@spbu.ru
Saint Petersburg, Russia; Saint Petersburg, Russia
参考
- Taylor G.I. The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations // Proc. R. Soc., Ser. A. 1948. V. 194. №. 1038. P. 289–299. https://doi.org/10.1098/rspa.1948.0081
- Chapman D.J., Radford D.D., Walley S.M. A History of the Taylor Test and Its Present Use in the Study of Lightweight Materials // Conference: Design and Use of Light- Weight Materials. 2005. P. 14–24.
- Von Karman T., Duwez P. The Propagation of Plastic Deformation in Solids // J. Appl. Phys. 1950. V. 21. № 10. P. 987–994. https://doi.org/10.1063/1.1699544
- Рахматулин Х.А. О распространении волны разгрузки // ПММ. 1945. Т. 9. № 1. С. 91–100.
- Пахнутова Н.В., Боянгин Е.Н., Шкода О.А., Зелепугин С.А. Микротвердость и динамический предел текучести медных образцов при ударе по жесткой стенке // Advanced Engineering Research. 2022. V. 22. № 3. P. 224–231. https://doi.org/10.23947/2687-1653-2022-22-3-224-231
- Rodionov E.S., Lupanov V.G., Grachyova N.A., Mayer P.N., Mayer A.E. Taylor Impact Tests with Copper Cylinders: Experiments, Microstructural Analysis and 3D SPH Modeling with Dislocation Plasticity and MD-Informed Artificial Neural Network as Equation of State // Metals. 2022. V. 12. № 2. P. 264. https://doi.org/10.3390/met12020264
- Баяндин Ю.В., Билалов Д.А., Уваров С.В. Верификация широкодиапазонных определяющих соотношений для упруговязкопластических материалов c использованием теста Тейлора–Гопкинсона // Вычислительная механика сплошных сред. 2020. Т. 13. № 4. P. 449–458. https://doi.org/10.7242/1999-6691/2020.13.4.35
- Narayan, Khan D., Chakraborty S. Axisymmetric model for Taylor im- pact test and estimation of metal plasticity using nonlinear deformation profile // J. Braz. Soc. Mech. Sci. Eng. 2023. V. 45. №. 3. P.128. https://doi.org/10.1007/s40430-023-04059-3
- Kyzioł L. Dynamic Properties of 40hm Steels at High Strain-Rates // Transactions of FAMENA. 2019. V. 43. № 4. P. 55–68. https://doi.org/10.21278/TOF.43405
- Zelepugin S.A., Cherepanov R.O., Pakhnutova N.V. Optimization of Johnson–Cook Constitutive Model Parameters Using the Nesterov Gradient-Descent Method // Materials. 2023. V. 16. № 15. P. 5452. https://doi.org/10.3390/ma16155452
- Włodarczyk E., Janiszewski J., Koperski W., Bazela R., Magier M. Estimation of Yield Stress in Tungsten Rods at High Strain-rates by Taylor’s Impact Technique // Conference: 26th International Symposium on Ballistics, 2011.
- Hawkyard J.B. A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations // Int. J. Mech. Sci. 1969. V. 11. № 3. P. 313–333. https://doi.org/10.1016/0020-7403(69)90049-6
- Hawkyard J.B., Eaton D., Johnson W. The mean dynamic yield strength of copper and low carbon steel at elevated temperatures from measurements of the “mushrooming” of flat-ended projectiles // Int. J. Mech. Sci. 1968. V. 10. № 12. P. 929–930. https://doi.org/10.1016/0020-7403(68)90048-9
- Jones S.E., Gillis P.P., Foster J.C. On the equation of motion of the undeformed section of a Taylor impact specimen // J. Appl. Phys. 1987. V. 61. № 2. P. 499–502. https://doi.org/10.1063/1.338249
- Jones S.E., Maudlin P.J., Foster J.C. An engineering analysis of plastic wave propagation in the Taylor test // Int. J. Impact Eng. 1997. V. 19. № 2. P. 95–106. https://doi.org/10.1016/S0734-743X(96)00020-6
- House J.W., Lewis J.C., Gillis P.P., Wilson L.L. Estimation of Flow Stress under High Rate Plastic Deformation // Int. J. Impact Eng. 1995. V. 16. № 2. P. 189–200. https://doi.org/10.1016/0734-743x(94)00042-u
- Eakins D., Thadhani N.N. Analysis of dynamic mechanical behavior in reverse Taylor anvil- on-rod impact tests // Int. J. Impact Eng. 2007. V. 34. № 11. P. 1821–1834. https://doi.org/10.1016/j.ijimpeng.2006.11.001
- Gao C., Iwamoto T. Instrumented Taylor impact test for measuring stress- strain curve through single trial // Int. J. Impact Eng. 2021. V. 157. P. 103980. https://doi.org/10.1016/j.ijimpeng.2021.103980
- Suh N. An investigation of the dynamic behavior of an annealed low carbon steel by means of stress pulse amplification // Int. J. Mech. Sci. 1967. V. 9. № 7. P. 415–431. https://doi.org/10.1016/0020-7403(67)90037-9
- Wilkins M.L., Guinan M.W. Impact of Cylinders on a rigid boundary // J. Appl. Phys. 1973.
- V. 44. № 3. P. 1200–1206. https://doi.org/10.1063/1.1662328
- Kruszka L., Anaszewicz Ł., Janiszewski J., Grązka M. Experimental and numerical analysis of Al6063 duralumin using Taylor impact test // EPJ Web of Conferences. 2012. V. 26. P. 01062. https://doi.org/10.1051/epjconf/20122601062
- Volkov G., Bratov V., Borodin E., Evstifeev A., Mikhailova N. Numerical simulations of impact Taylor tests // Journal of Physics: Conference Series. 2020. V. 1556. https://doi.org/10.1088/1742-6596/1556/1/012059
- Zukas J.A., Nicholas T., Swift H.F., Greszczuk L.B., Curran D.R. Impact Dynamics. New York: Wiley, 1982.
- Kraft J.M., Sullivan A.M. Effect of Grain Size and Carbon Content on Yield Delay Time of Mild Steel // Transactions of the American Society of Metals. 1959. V. 51. P. 643.
- Суворова Ю.В. Запаздывание текучести в сталях // Журнал прикладной математики и технической физики. 1968. Т. 9. № 3. P. 55–62.
- Gruzdkov A .A., Petrov Yu.V. On Temperature-Time Correspondence in High-Rate Deformation of Metals // Doklady Physics. 1999. V. 44. № 2. P. 114–116.
- Gruzdkov A.A., Sitnikova E.V., Morozov N.F., Petrov Yu.V. Thermal effect in dynamic yielding and fracture of metals and alloys // Math. Mech. Solids. 2009. V. 14. P. 72–87. https://doi.org/10.1177/1081286508092603
- Petrov Yu.V., Borodin E.N. Relaxation Mechanism of Plastic Deformation and Its Justification Using the Example of the Sharp Yield Point Phenomenon in Whiskers // Phys. Solid State. 2015. V. 57. № 2. P. 353–359. https://doi.org/10.1134/s1063783415020286
- Selyutina N.S., Borodin E.N., Petrov Yu.V, Mayer A.E. The definition of characteristic times of plastic relaxation by dislocation slip and grain boundary sliding in copper and nickel. // Int. J. Plast. 2016. V. 82. P. 97–111. https://doi.org/10.1016/j.ijplas.2016.02.004
- Selyutina N.S., Petrov Yu.V. Prediction of the Dynamic Yield Strength of Metals Using Two Structural–Temporal Parameters. // Phys. Solid State. 2018. V. 60. № 2. P. 244–249. https://doi.org/10.1134/s1063783418020221
- Petrov Yu.V., Gruzdkov A.A., Sitnikova E.V. Anomalous Behavior of Yield Stress upon an Increase in Temperature under High Strain Rate Conditions // Doklady Physics. 2007. V. 52. № 12. P. 691–694. https://doi.org/10.1134/s1028335807120129
补充文件

