Viscoplastic Flow in the Material of a Cylindrical Layer Suspended on a Rigid Shaft under the Conditions of Its Variable Rotation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The development of viscoplastic flow in the material of a cylindrical layer placed on a rigid cylindrical shaft and rotating with it around their common axis is calculated. Depending on the increasing speed of rotation up to the maximum, the place and time points of the beginning of the viscoplastic flow, the patterns of propagation of the flow area, the changing strains and stresses in the deformable material are determined. As a condition for viscoplastic flow, the corresponding generalization of the condition for maximum octahedral stresses is taken. For the purposes of testing the calculation programs, an exact solution of the problem of a steady viscoplastic flow of a material during rotation of a compound cylinder at a constant speed has been obtained.

Sobre autores

S. Firsov

Institute of Mechanical Engineering and Metallurgy of the Far East Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: firsov.s.new@yandex.ru
Komsomolsk-na-Amure, 681005 Russia

Bibliografia

  1. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 2014. 752 p.
  2. Nadai A. Theory of Flow and Fracture of Solids. McGraw Hill, 1950. 572 p.
  3. Gamer U., Sayir M. Elastic-plastic stress distribution in a rotating solid shaft // ZAMP. 1984. V. 35. № 5. P. 601–617. https://doi.org/10.1007/BF00952107
  4. Mack W. The rotating elastic-plastic solid shaft with free ends // Tech. Mech. 1991. № 12. P. 119–124.
  5. Mack W. Rotating elastic-plastic tube with free ends // Int. J. Solids Struct. 1991. V. 27. № 11. P. 1461–1476. https://doi.org/10.1016/0020-7683(91)90042-E
  6. Gamer U., Mack W., Varga I. Rotating elastic-plastic solid shaft with fixed ends // Int. J. Eng. Sci. 1997. V. 35. № 3. P. 253–267. https://doi.org/10.1016/S0020-7225(96)00085-7
  7. Прокудин А.Н., Фирсов С.В. Вязкопластическое течение вращающегося полого цилиндра // Дальневосточный математический журнал. 2018. V. 18. № 2. P. 242–260.
  8. Прокудин А.Н., Буренин А.А. Упругопластическое деформирование вращающегося сплошного цилиндра из линейно-упрочняющегося материала // ПММ. 2021. V. 85. № 2. P. 172–192. https://doi.org/10.31857/S0032823521020077
  9. Прокудин А.Н., Буренин А.А. Анализ упругопластического деформирования вращающегося сплошного цилиндра при общем кусочно-линейном условии пластичности // ПМТФ. 2021. V. 62. № 5 (369). P. 68–79. https://doi.org/10.15372/PMTF20210507
  10. Begun A.S., Burenin A.A., Kovtanyuk L.V., Prokudin A.N. Irreversible deformation of a rotating disk having angular acceleration // Acta Mech. 2021. V. 232. № 5. P. 1917–1931. https://doi.org/10.1007/s00707-021-02942-5
  11. Firsov S.V., Prokudin A.N., Burenin A.A. Creep and plastic flow in a rotating cylinder with a rigid inclusion // J. Appl. Industr. Math. 2019. V. 13. № 4. P. 642–652. https://doi.org/10.1134/S199047891904001X
  12. Быковцев Г.И., Ивлев Д.Д. Теория пластичности. Владивосток: Дальнаука, 1998. 528 p.
  13. Мосолов П.П., Мясников В.П. Механика жесткопластических сред. М.: Наука, 1988. 208 p.
  14. Ковтанюк Л.В., Шитиков А.В. О теории больших упругопластических деформаций материалов при учете температурных и реологических эффектов // Вестник ДВО РАН. 2006. № 4. P. 87–93.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (33KB)
3.

Baixar (102KB)
4.

Baixar (127KB)

Declaração de direitos autorais © С.В. Фирсов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies