ALTERATION OF NATURAL VIBRATION FREQUENCIES BY PIEZOELECTRIC ELEMENTS EMBEDDED IN ELASTIC BODIES

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper addresses the problem of altering the natural vibration frequencies of an elastic body with embedded piezoelectric elements by applying an electric potential to them. Presented mathematical formulation of the problem based on the principle of virtual displacements for a piecewise-homogeneous electroelastic body. Finite deformations are represented as the sum of linear and nonlinear parts, which are linearized with respect to a state featuring a small deviation from the initial equilibrium position caused by the reverse piezoelectric effect. Provided experimental and numerical results validate the reliability of the numerical algorithm based on the finite element method. Using a plate with an embedded piezoelectric element as an example, presented numerical results demonstrate the influence of various parameters on the change in natural vibration frequencies: the stiffness characteristics of the elastic body; the dimensions, location, and number of piezoelectric actuators; the area ratio of the piezoelectric element to the elastic body; and the magnitude and sign of the electric potential.

Авторлар туралы

A. Kamenskikh

Institute of Continuous Media Mechanics of the Ural Branch of the RAS (ICMM UB RAS)

Хат алмасуға жауапты Автор.
Email: kamenskikh.a@icmm.ru
Perm, Russia

Әдебиет тізімі

  1. Song G., Sethi V., Li H.-N. Vibration control of civil structures using piezoceramic smart materials: A review // Eng. Struct. 2006. V. 28 № 11. P. 1513–1524. https://doi.org/10.1016/j.engstruct.2006.02.002
  2. Yan-ting A. et al. The influence of stiffened ribs on vibration of a thin-walled casing // 2017 9th International Conference on Modelling, Identification and Control (ICMIC). Kunming: IEEE, 2017. P. 60–64. https://doi.org/10.1109/ICMIC.2017.8321531
  3. Cobb R. et al. F-16 Ventral Fin Buffet Alleviation Using Piezoelectric Actuators // 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs, California: American Institute of Aeronautics and Astronautics, 2009. https://doi.org/10.2514/6.2009-2538
  4. Abramovich H. Intelligent materials and structures. 1-st ed. Berlin: Walter de Gruyter, 2016. 378 p.
  5. Вольмир А.С. Нелинейная динамика пластинок и оболочек. М.: Наука, 1972. 432 с.
  6. Zhang Y. et al. Vibration control of membrane structures by piezoelectric actuators considering piezoelectric nonlinearity under strong electric fields // Eng. Struct. 2024. V. 315. Art. № 118413. https://doi.org/10.1016/j.engstruct.2024.118413
  7. Sun X.G., Chi W.C., Wang Y.Q. Linear active disturbance rejection control algorithm for active vibration control of piezo-actuated beams: Theoretical and experimental studies // Thin-Walled Structures. 2024. V. 199. Art. № 111782. https://doi.org/10.1016/j.tws.2024.111782
  8. Shivashankar P., Gopalakrishnan S. Review on the use of piezoelectric materials for active vibration, noise, and flow control // Smart Mater. Struct. 2020. V. 29. № 5. Art. № 053001. https://doi.org/10.1088/1361-665X/ab7541
  9. Kamenskikh A., Lekomtsev S., Matveenko V. Free Vibration of Prestressed Plates and Shallow Shells with Piezoelectric Elements // Int. J. Appl. Mechanics. 2024. V. 16. № 07. Art. № 2450072. https://doi.org/10.1142/S1758825124500728
  10. Ren R. et al. Stiffness enhancement methods for thin-walled aircraft structures: A review // Thin-Walled Structures. 2024. V. 201. Art. № 111995. https://doi.org/10.1016/j.tws.2024.111995
  11. Hernandes J.A., Almeida S.F.M., Nabarrete A. Stiffening effects on the free vibration behavior of composite plates with PZT actuators // Composite Structures. 2000. V. 49. № 1. P. 55–63. https://doi.org/10.1016/S0263-8223(99)00125-7
  12. Donadon M.V., Almeida S.F.M., De Faria A.R. Stiffening effects on the natural frequencies of laminated plates with piezoelectric actuators // Composites Part B: Engineering. 2002. V. 33. № 5. P. 335–342. https://doi.org/10.1016/s1359-8368(02)00026-4
  13. Abramovich H. Axial Stiffness Variation of Thin Walled Laminated Composite Beams Using Piezoelectric Patches- a New Experimental Insight // IJASAR. 2016. P. 97–105. https://doi.org/10.19070/2470-4415-1600012
  14. Fridman Y., Abramovich H. Enhanced structural behavior of flexible laminated composite beams // Composite Structures. 2008. V. 82. № 1. P. 140–154. https://doi.org/10.1016/j.compstruct.2007.05.007
  15. Kuliński K., Przybylski J. Stability and vibrations control of a stepped beam using piezoelectric actuation // MATEC Web Conf. 2018. V. 157. Art. № 08004. https://doi.org/10.1051/matecconf/201815708004
  16. Kuo S.-Y. Stiffening Effects on the Natural Frequencies of Laminated Beams with Piezoelectric Actuators // J. Aeronaut. Astronaut. Aviat. Series A. 2010. V. 42. № 1. P. 67–72.
  17. Zenz G., Humer A. Stability enhancement of beam-type structures by piezoelectric transducers: theoretical, numerical and experimental investigations // Acta Mech. 2015. V. 226. № 12. P. 3961–3976. https://doi.org/10.1007/s00707-015-1445-9
  18. Kasem M.M., Dowell E.H. A study of the natural modes of vibration and aeroelastic stability of a plate with a piezoelectric material // Smart Mater. Struct. 2018. V. 27. № 7. Art. № 075043. https://doi.org/10.1088/1361-665X/aac8a7
  19. Versiani T.D.S.S. et al. Aeroelastic behavior of a composite plate-like wing under piezoelectrically induced stresses // Mech. Syst. Signal Processing. 2020. V. 143. Art. № 106795. https://doi.org/10.1016/j.ymssp.2020.106795
  20. Almeida A. et al. The effect of piezoelectrically induced stress stiffening on the aeroelastic stability of curved composite panels // Composite Structures. 2012. V. 9 4. № 1 2. P. 3601–3611. https://doi.org/10.1016/j.compstruct.2012.06.008
  21. Tsushima N., Su W. Flutter suppression for highly flexible wings using passive and active piezoelectric effects // Aerosp. Sci. Technol. 2017. V. 65. P. 78–89. https://doi.org/10.1016/j.ast.2017.02.013
  22. Kasem M.M., Negm H., Elsabbagh A. Aeroelastic Modeling of Smart Composite Wings Using Geometric Stiffness // J. Aerosp. Eng. 2019. V. 32. № 2. Art. № 04018143. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000957
  23. Salmani H. et al. Modal analysis of piezoelectrically actuated plates with built-in stress by computationally augmented interferometric experiments // Sens. Actuators A: Physical. 2022. V. 337. Art. № 113444. https://doi.org/10.1016/j.sna.2022.113444
  24. Партон В.З., Кудрявцев Б.А. Электромагнитоупругость пьезоэлектрических и электропроводных тел. М.: Наука, 1988. 472 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).