ALTERATION OF NATURAL VIBRATION FREQUENCIES BY PIEZOELECTRIC ELEMENTS EMBEDDED IN ELASTIC BODIES
- Авторлар: Kamenskikh A.O.1
-
Мекемелер:
- Institute of Continuous Media Mechanics of the Ural Branch of the RAS (ICMM UB RAS)
- Шығарылым: № 6 (2025)
- Беттер: 261–276
- Бөлім: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/361329
- DOI: https://doi.org/10.7868/S1026351925060143
- ID: 361329
Дәйексөз келтіру
Аннотация
This paper addresses the problem of altering the natural vibration frequencies of an elastic body with embedded piezoelectric elements by applying an electric potential to them. Presented mathematical formulation of the problem based on the principle of virtual displacements for a piecewise-homogeneous electroelastic body. Finite deformations are represented as the sum of linear and nonlinear parts, which are linearized with respect to a state featuring a small deviation from the initial equilibrium position caused by the reverse piezoelectric effect. Provided experimental and numerical results validate the reliability of the numerical algorithm based on the finite element method. Using a plate with an embedded piezoelectric element as an example, presented numerical results demonstrate the influence of various parameters on the change in natural vibration frequencies: the stiffness characteristics of the elastic body; the dimensions, location, and number of piezoelectric actuators; the area ratio of the piezoelectric element to the elastic body; and the magnitude and sign of the electric potential.
Авторлар туралы
A. Kamenskikh
Institute of Continuous Media Mechanics of the Ural Branch of the RAS (ICMM UB RAS)
Хат алмасуға жауапты Автор.
Email: kamenskikh.a@icmm.ru
Perm, Russia
Әдебиет тізімі
- Song G., Sethi V., Li H.-N. Vibration control of civil structures using piezoceramic smart materials: A review // Eng. Struct. 2006. V. 28 № 11. P. 1513–1524. https://doi.org/10.1016/j.engstruct.2006.02.002
- Yan-ting A. et al. The influence of stiffened ribs on vibration of a thin-walled casing // 2017 9th International Conference on Modelling, Identification and Control (ICMIC). Kunming: IEEE, 2017. P. 60–64. https://doi.org/10.1109/ICMIC.2017.8321531
- Cobb R. et al. F-16 Ventral Fin Buffet Alleviation Using Piezoelectric Actuators // 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs, California: American Institute of Aeronautics and Astronautics, 2009. https://doi.org/10.2514/6.2009-2538
- Abramovich H. Intelligent materials and structures. 1-st ed. Berlin: Walter de Gruyter, 2016. 378 p.
- Вольмир А.С. Нелинейная динамика пластинок и оболочек. М.: Наука, 1972. 432 с.
- Zhang Y. et al. Vibration control of membrane structures by piezoelectric actuators considering piezoelectric nonlinearity under strong electric fields // Eng. Struct. 2024. V. 315. Art. № 118413. https://doi.org/10.1016/j.engstruct.2024.118413
- Sun X.G., Chi W.C., Wang Y.Q. Linear active disturbance rejection control algorithm for active vibration control of piezo-actuated beams: Theoretical and experimental studies // Thin-Walled Structures. 2024. V. 199. Art. № 111782. https://doi.org/10.1016/j.tws.2024.111782
- Shivashankar P., Gopalakrishnan S. Review on the use of piezoelectric materials for active vibration, noise, and flow control // Smart Mater. Struct. 2020. V. 29. № 5. Art. № 053001. https://doi.org/10.1088/1361-665X/ab7541
- Kamenskikh A., Lekomtsev S., Matveenko V. Free Vibration of Prestressed Plates and Shallow Shells with Piezoelectric Elements // Int. J. Appl. Mechanics. 2024. V. 16. № 07. Art. № 2450072. https://doi.org/10.1142/S1758825124500728
- Ren R. et al. Stiffness enhancement methods for thin-walled aircraft structures: A review // Thin-Walled Structures. 2024. V. 201. Art. № 111995. https://doi.org/10.1016/j.tws.2024.111995
- Hernandes J.A., Almeida S.F.M., Nabarrete A. Stiffening effects on the free vibration behavior of composite plates with PZT actuators // Composite Structures. 2000. V. 49. № 1. P. 55–63. https://doi.org/10.1016/S0263-8223(99)00125-7
- Donadon M.V., Almeida S.F.M., De Faria A.R. Stiffening effects on the natural frequencies of laminated plates with piezoelectric actuators // Composites Part B: Engineering. 2002. V. 33. № 5. P. 335–342. https://doi.org/10.1016/s1359-8368(02)00026-4
- Abramovich H. Axial Stiffness Variation of Thin Walled Laminated Composite Beams Using Piezoelectric Patches- a New Experimental Insight // IJASAR. 2016. P. 97–105. https://doi.org/10.19070/2470-4415-1600012
- Fridman Y., Abramovich H. Enhanced structural behavior of flexible laminated composite beams // Composite Structures. 2008. V. 82. № 1. P. 140–154. https://doi.org/10.1016/j.compstruct.2007.05.007
- Kuliński K., Przybylski J. Stability and vibrations control of a stepped beam using piezoelectric actuation // MATEC Web Conf. 2018. V. 157. Art. № 08004. https://doi.org/10.1051/matecconf/201815708004
- Kuo S.-Y. Stiffening Effects on the Natural Frequencies of Laminated Beams with Piezoelectric Actuators // J. Aeronaut. Astronaut. Aviat. Series A. 2010. V. 42. № 1. P. 67–72.
- Zenz G., Humer A. Stability enhancement of beam-type structures by piezoelectric transducers: theoretical, numerical and experimental investigations // Acta Mech. 2015. V. 226. № 12. P. 3961–3976. https://doi.org/10.1007/s00707-015-1445-9
- Kasem M.M., Dowell E.H. A study of the natural modes of vibration and aeroelastic stability of a plate with a piezoelectric material // Smart Mater. Struct. 2018. V. 27. № 7. Art. № 075043. https://doi.org/10.1088/1361-665X/aac8a7
- Versiani T.D.S.S. et al. Aeroelastic behavior of a composite plate-like wing under piezoelectrically induced stresses // Mech. Syst. Signal Processing. 2020. V. 143. Art. № 106795. https://doi.org/10.1016/j.ymssp.2020.106795
- Almeida A. et al. The effect of piezoelectrically induced stress stiffening on the aeroelastic stability of curved composite panels // Composite Structures. 2012. V. 9 4. № 1 2. P. 3601–3611. https://doi.org/10.1016/j.compstruct.2012.06.008
- Tsushima N., Su W. Flutter suppression for highly flexible wings using passive and active piezoelectric effects // Aerosp. Sci. Technol. 2017. V. 65. P. 78–89. https://doi.org/10.1016/j.ast.2017.02.013
- Kasem M.M., Negm H., Elsabbagh A. Aeroelastic Modeling of Smart Composite Wings Using Geometric Stiffness // J. Aerosp. Eng. 2019. V. 32. № 2. Art. № 04018143. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000957
- Salmani H. et al. Modal analysis of piezoelectrically actuated plates with built-in stress by computationally augmented interferometric experiments // Sens. Actuators A: Physical. 2022. V. 337. Art. № 113444. https://doi.org/10.1016/j.sna.2022.113444
- Партон В.З., Кудрявцев Б.А. Электромагнитоупругость пьезоэлектрических и электропроводных тел. М.: Наука, 1988. 472 с.
Қосымша файлдар

