ALTERATION OF NATURAL VIBRATION FREQUENCIES BY PIEZOELECTRIC ELEMENTS EMBEDDED IN ELASTIC BODIES
- Autores: Kamenskikh A.O.1
-
Afiliações:
- Institute of Continuous Media Mechanics of the Ural Branch of the RAS (ICMM UB RAS)
- Edição: Nº 6 (2025)
- Páginas: 261–276
- Seção: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/361329
- DOI: https://doi.org/10.7868/S3034543X25060143
- ID: 361329
Citar
Resumo
Sobre autores
A. Kamenskikh
Institute of Continuous Media Mechanics of the Ural Branch of the RAS (ICMM UB RAS)
Email: kamenskikh.a@icmm.ru
Perm, Russia
Bibliografia
- Song G., Sethi V., Li H.-N. Vibration control of civil structures using piezoceramic smart materials: A review // Eng. Struct. 2006. V. 28 № 11. P. 1513–1524. https://doi.org/10.1016/j.engstruct.2006.02.002
- Yan-ting A. et al. The influence of stiffened ribs on vibration of a thin-walled casing // 2017 9th International Conference on Modelling, Identification and Control (ICMIC). Kunming: IEEE, 2017. P. 60–64. https://doi.org/10.1109/ICMIC.2017.8321531
- Cobb R. et al. F-16 Ventral Fin Buffet Alleviation Using Piezoelectric Actuators // 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs, California: American Institute of Aeronautics and Astronautics, 2009. https://doi.org/10.2514/6.2009-2538
- Abramovich H. Intelligent materials and structures. 1-st ed. Berlin: Walter de Gruyter, 2016. 378 p.
- Вольмир А.С. Нелинейная динамика пластинок и оболочек. М.: Наука, 1972. 432 с.
- Zhang Y. et al. Vibration control of membrane structures by piezoelectric actuators considering piezoelectric nonlinearity under strong electric fields // Eng. Struct. 2024. V. 315. Art. № 118413. https://doi.org/10.1016/j.engstruct.2024.118413
- Sun X.G., Chi W.C., Wang Y.Q. Linear active disturbance rejection control algorithm for active vibration control of piezo-actuated beams: Theoretical and experimental studies // Thin-Walled Structures. 2024. V. 199. Art. № 111782. https://doi.org/10.1016/j.tws.2024.111782
- Shivashankar P., Gopalakrishnan S. Review on the use of piezoelectric materials for active vibration, noise, and flow control // Smart Mater. Struct. 2020. V. 29. № 5. Art. № 053001. https://doi.org/10.1088/1361-665X/ab7541
- Kamenskikh A., Lekomtsev S., Matveenko V. Free Vibration of Prestressed Plates and Shallow Shells with Piezoelectric Elements // Int. J. Appl. Mechanics. 2024. V. 16. № 07. Art. № 2450072. https://doi.org/10.1142/S1758825124500728
- Ren R. et al. Stiffness enhancement methods for thin-walled aircraft structures: A review // Thin-Walled Structures. 2024. V. 201. Art. № 111995. https://doi.org/10.1016/j.tws.2024.111995
- Hernandes J.A., Almeida S.F.M., Nabarrete A. Stiffening effects on the free vibration behavior of composite plates with PZT actuators // Composite Structures. 2000. V. 49. № 1. P. 55–63. https://doi.org/10.1016/S0263-8223(99)00125-7
- Donadon M.V., Almeida S.F.M., De Faria A.R. Stiffening effects on the natural frequencies of laminated plates with piezoelectric actuators // Composites Part B: Engineering. 2002. V. 33. № 5. P. 335–342. https://doi.org/10.1016/s1359-8368(02)00026-4
- Abramovich H. Axial Stiffness Variation of Thin Walled Laminated Composite Beams Using Piezoelectric Patches- a New Experimental Insight // IJASAR. 2016. P. 97–105. https://doi.org/10.19070/2470-4415-1600012
- Fridman Y., Abramovich H. Enhanced structural behavior of flexible laminated composite beams // Composite Structures. 2008. V. 82. № 1. P. 140–154. https://doi.org/10.1016/j.compstruct.2007.05.007
- Kuliński K., Przybylski J. Stability and vibrations control of a stepped beam using piezoelectric actuation // MATEC Web Conf. 2018. V. 157. Art. № 08004. https://doi.org/10.1051/matecconf/201815708004
- Kuo S.-Y. Stiffening Effects on the Natural Frequencies of Laminated Beams with Piezoelectric Actuators // J. Aeronaut. Astronaut. Aviat. Series A. 2010. V. 42. № 1. P. 67–72.
- Zenz G., Humer A. Stability enhancement of beam-type structures by piezoelectric transducers: theoretical, numerical and experimental investigations // Acta Mech. 2015. V. 226. № 12. P. 3961–3976. https://doi.org/10.1007/s00707-015-1445-9
- Kasem M.M., Dowell E.H. A study of the natural modes of vibration and aeroelastic stability of a plate with a piezoelectric material // Smart Mater. Struct. 2018. V. 27. № 7. Art. № 075043. https://doi.org/10.1088/1361-665X/aac8a7
- Versiani T.D.S.S. et al. Aeroelastic behavior of a composite plate-like wing under piezoelectrically induced stresses // Mech. Syst. Signal Processing. 2020. V. 143. Art. № 106795. https://doi.org/10.1016/j.ymssp.2020.106795
- Almeida A. et al. The effect of piezoelectrically induced stress stiffening on the aeroelastic stability of curved composite panels // Composite Structures. 2012. V. 9 4. № 1 2. P. 3601–3611. https://doi.org/10.1016/j.compstruct.2012.06.008
- Tsushima N., Su W. Flutter suppression for highly flexible wings using passive and active piezoelectric effects // Aerosp. Sci. Technol. 2017. V. 65. P. 78–89. https://doi.org/10.1016/j.ast.2017.02.013
- Kasem M.M., Negm H., Elsabbagh A. Aeroelastic Modeling of Smart Composite Wings Using Geometric Stiffness // J. Aerosp. Eng. 2019. V. 32. № 2. Art. № 04018143. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000957
- Salmani H. et al. Modal analysis of piezoelectrically actuated plates with built-in stress by computationally augmented interferometric experiments // Sens. Actuators A: Physical. 2022. V. 337. Art. № 113444. https://doi.org/10.1016/j.sna.2022.113444
- Партон В.З., Кудрявцев Б.А. Электромагнитоупругость пьезоэлектрических и электропроводных тел. М.: Наука, 1988. 472 с.
Arquivos suplementares

