THERMOMECHANICAL AND THERMOPHYSICAL PROPERTIES OF LITHIUM NIOBATE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new thermodynamic model of lithium niobate is proposed, based on the use of the sixth-degree Landau potential. Its feature is the nonlinear dependence of the coefficient at the square of polarization along the polar direction on temperature. In contrast to the previously used fourth-degree potential, this ensures good agreement between the behavior of spontaneous polarization and deformation calculated on its basis and the results of experimental studies. Using the proposed thermodynamic potential, a complete set of material constants determining the thermomechanical properties of lithium niobate, as well as constants of the electro-optical and acousto-optical effects in a wide range of temperature changes, is constructed. Independence of the elastic moduli of lithium niobate from temperature is confirmed, in contrast to piezoelectric, acousto-optical and electro-optical constants, some of which undergo significant changes. The results are of interest when choosing the orientation of the crystal cut in the process of developing micro- and nanoscale acousto- and optoelectronic devices.

About the authors

V. B. Shirokov

Southern Scientific Center RAS

Email: vkalin415@mail.ru
Rostov-on-Don, Russia

I. B. Mikhailova

Southern Scientific Center RAS

Email: vkalin415@mail.ru
Rostov-on-Don, Russia

A. S. Turchin

Southern Scientific Center RAS

Author for correspondence.
Email: vkalin415@mail.ru
Rostov-on-Don, Russia

V. V. Kalinchuk

Southern Scientific Center RAS

Email: vkalin415@mail.ru
Rostov-on-Don, Russia

References

  1. Weis R.S., Gaylord T.K. Lithium niobate: summary of physical properties and crystal structure // Appl. Phys. A. 1985. V. 37. № 4. P. 191–203. https://doi.org/10.1007/BF00614817
  2. Кузьминов Ю.С. Электрооптический и нелинейно-оптический кристалл ниобата лития. М.: Наука, 1987. 264 с.
  3. Wong K.K. Properties of Lithium Niobate. London: INSPEC, The Institution of Electrical Engineers, 2002. 417 p.
  4. Morgan D.P. Surface Wave Devices for Signal Processing. Elsevier, 1985. = Морган Д. Устройства обработки сигналов на поверхностных акустических волнах. М.: Радио и Связь, 1990. 416 с.
  5. Орлов В.С., Бондаренко В.С. Фильтры на поверхностных акустических волнах. М.: Радио и Связь, 1984. 272 с.
  6. Mandal D., Banerjee S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications // Sensors. 2022. V. 22. № 3. Art. 820. https://doi.org/10.3390/s22030820
  7. Chen G., Li N., Ng J.D., Lin H.-L., Zhou Y., Fu Y.H. et al. Advances in lithium niobate photonics: development status and perspectives // Adv. Photonics. 2022. V. 4. № 3. P. 1–43. https://doi.org/10.1117/1.AP.4.3.034003
  8. Zhu Y., Wan Q. Lithium niobate/lithium tantalate single crystal thin films for post moore era chip applications // Moore and More. 2024. V. 1. № 6. P. 1–17. https://doi.org/10.1007/s44275-024-00005-0
  9. Srzolenskii G.A., Krainik N.N., Khuchua N.P., Zhdanova V.V., Mylnikova I.E. The Curie Temperature of LiNbO3 // Phys. Stat. Sol. 1966. V. 13. № 2. P. 309–314. https://doi.org/10.1002/pssb.19660130202
  10. Nassau K., Levinstein H.J., Loiacono G.M. Ferroelectric lithium niobate. 2. Preparation of single domain crystals // J. Phys. Chem. Solids. 1966. V. 27. № 6–7. P. 989–996. https://doi.org/10.1016/0022-3697(66)90071-0
  11. Warner A.W., Onoe M., Coquin G.A. Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m) // J. Acoust. Soc. Am. 1967. V. 42. № 6. P. 1223–1231. https://doi.org/10.1121/1.1910709
  12. Smith R.T., Welsh F.S. Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate // J. Appl. Phys. 1971. V. 42. № 6. P. 2219–2230. https://doi.org/10.1063/1.1660528
  13. Tomeno I., Matsumura S. Elastic and dielectric-properties of LiNbO3 // J. Phys. Soc. Jpn. 1987. V. 56. № 1. P. 163–177. https://doi.org/10.1143/JPSJ.56.163
  14. Xue D., Betzler K., Hesse H., Lammers D. Temperature dependence of the dielectric response of lithium niobate // J. Phys. Chem. Solids. 2001. V. 62. № 5. P. 973–976. https://doi.org/10.1016/S0022-3697(00)00273-0
  15. Ogi H., Kawasaki Y., Hirao M., Ledbetter H. Acoustic spectroscopy of lithium niobate: Elastic and piezoelectric coefficients // J. Appl. Phys. 2002. V. 92. № 5. P. 2451–2456. https://doi.org/10.1063/1.1497702
  16. Jazbinsek M., Zgonik M. Material tensor parameters of LiNbO3 relevant for electroand elasto-optics // Appl. Phys. B. 2002. V. 74. P. 407–414. https://doi.org/10.1007/s003400200818
  17. Murakami S., Watanabe K., Takigawa R. Investigation of the interface between LiNbO3 and Si fabricated via room-temperature bonding method using activated Si nano layer // Jpn. J. Appl. Phys. 2023. V. 62. https://doi.org/10.35848/1347-4065/acc2cb
  18. Jia Y., Wang L., Chen F. Ion-cut lithium niobate on insulator technology: Recent advances and perspectives // Appl. Phys. Rev. 2021. V. 8. № 1. https://doi.org/10.1063/5.0037771
  19. Pastureaud Th., Solal M., Biasse B., Aspar B., Briot J.-b., Daniau W. et al. High-Frequency Surface Acoustic Waves Excited on Thin-Oriented LiNbO3 Single-Crystal Layers Transferred Onto Silicon // IEEE Trans. Sonics Ultrason. 2007. V. 54. № 4. P. 870–876. https://doi.org/10.1109/TUFFC.2007.321
  20. Solal M., Pastureaud T., Ballandras S., Aspar B., Biasse B., Daniau W. et al. Oriented lithium niobate layers transferred on 4” (100) silicon wafer for RF SAW devices // 2002 IEEE Ultrasonics Symposium Proceedings. Munich, Germany, 2002. V. 1. P. 131–134. https://doi.org/10.1109/ULTSYM.2002.1193369
  21. Yamada T. Electromechanical Properties of Oxygen Octahedra Ferroelectric Crystals // J. Appl. Phys. 1972. V. 43. № 2. P. 328–338. https://doi.org/10.1063/1.1661117
  22. Scrymgeour D. A., Gopalan V., Itagi A., Saxena A., Swart P. J. Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate // Phys. Rev. B. 2005. V. 71. Art. 184110. https://doi.org/10.1103/PhysRevB.71.184110
  23. Boysen H., Altorfer F. A Neutron Powder Investigation of the High-Temperature Structure and Phase Transition in LiNbO3 // Acta Cryst Section B. 1994. V. 50. P. 405–414. https://doi.org/10.1107/S0108768193012820
  24. Широков В.Б. Базис инвариантов для сегнетомагнетика // Кристаллография. 2011. Т. 56. № 3. С. 509–510.
  25. Salje E.K.H., Gallardo M.C., Jimenez J., Romero F.J., del Cerro J. The cubic–tetragonal phase transition in strontium titanate: excess specific heat measurements and evidence for a near-tricritical, mean field type transition mechanism // J. Phys.: Condens. Matter. 1998. V. 10. № 25. P. 5535–5543.
  26. Шостак Р.И. Евдокимов С.В., Яценко А.В. Анализ температурной зависимости спонтанной поляризации кристаллов LiNbO3 // Кристаллография. 2009. Т. 54. № 3. С. 527–531.
  27. Lehnert H., Boysen H., Frey F. A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3 // Zeitschrift für Kristallographie. 1997. V. 212. № 10. P. 712–719. https://doi.org/10.1524/zkri.1997.212.10.712
  28. Ярив А., Юх П. Оптические волны в кристаллах. М.: Мир, 1987. 616 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).