IDENTIFICATION OF A THERMOVISCOELASTIC CROSSLINKED POLYMER MODEL TAKING INTO ACCOUNT LARGE DEFORMATIONS AND ITS APPLICATION
- Authors: Smetannikov O.Y.1, Faskhutdinova Y.B.1, Ilinyh G.V.1
-
Affiliations:
- Perm National Research Polytechnic University
- Issue: No 6 (2025)
- Pages: 128–151
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/361323
- DOI: https://doi.org/10.7868/S1026351925060081
- ID: 361323
Cite item
Abstract
The purpose of the work is to develop a model of viscoelastic thermomechanical behavior of cross-linked polyethylene (CLPE) products with a shape memory effect. The main area of application of this class of materials is heat-shrinkable tubes and their modifications. They are characterized by initial expansion values of 100 percent or more. Simo and Holzapfel proposed modified defining relations representing a synthesis of the viscoelastic Proni model and the hyperelastic model based on the elastic energy potential. The published work proposes a methodology for identification of both damping and nonlinear elastic material constants in case of large deformations. An experimental program is developed and implemented to determine the material constants of cross-linked polyethylene. It includes the procedure of reducing the dimension of the nonlinear optimization problem when finding exponential approximation coefficients of the relaxation function. A description is given of the developed algorithm for searching for the material constants of a hyperelastic model based on the results of an experiment on cyclic loading of a sample with large deformations in the range of highly elastic behavior. An adaptation of the hyperelastic model in ANSYS is made taking into account the presence of relaxation properties. As an illustration of the application of the updated physical model, an example of a finite element calculation of the pressure of heat-shrinkable tubes when deposited on a rigid cylindrical surface is given. An engineering technique is also proposed that allows similar calculations to be made in the Excel spreadsheet.
About the authors
O. Yu. Smetannikov
Perm National Research Polytechnic University
Author for correspondence.
Email: sou2009@mail.ru
Perm, Russia
Yu. B. Faskhutdinova
Perm National Research Polytechnic University
Email: fub26@mail.ru
Perm, Russia
G. V. Ilinyh
Perm National Research Polytechnic University
Email: gleb@ilinyh.ru
Perm, Russia
References
- Smetannikov O.Yu., Faskhutdinova Yu.B., Subbotin E.V. ANSYS Study of the ShapeMemory Effect in Cross-Linked Polyethylene Products // J. Appl. Mech. Tech. Phys. 2022. V. 63. № 7. P. 1138–1154. https://doi.org/10.1134/s0021894422070112
- Lendlein A., Gould O.E.C. Reprogrammable recovery and actuation behavior of shapememory polymers // Nat. Rev. Mater. 2019. V. 4. P. 116–133. https://doi.org/10.1038/s41578-018-0078-8
- Lyubimova A.S., Tkachuk A.I., Kuznetsova P.A. Shape memory polymers based on epoxy resins // Proceedings of VIAM. 2024. № 4 (134). P. 50–63. https://doi.org/10.18577/2307-6046-2024-0-4-50-63
- Li J., Duan Q., Zhang E., Wang J. Applications of shape memory polymers in kinetic buildings // Adv. Mater. Sci. Eng. 2018. V. 2018. P. 7453698. https://doi.org/10.1155/2018/7453698
- Kayumov R.A., Strakhov D.E. The question of the simulation shape memory effect in polymer mufti // NAU. 2015. № 4-2. P. 107–111.
- Arvanitakis A.I. A constitutive level-set model for shape memory polymers and shape memory polymeric composites // Arch. Appl. Mech. 2019. V. 89. P. 1939–1951. https://doi.org/10.1007/s00419-019-01553-w
- Wang Z., Chang M., Kong F., Yun K. Optimization of thermo-mechanical properties of shape memory polymer composites based on a network model // Chem. Eng. Sci. 2019. V. 207. P. 1017–1029. https://doi.org/10.1016/j.ces.2019.07.022
- Rogovoi A.A., Stolbova O.S. Final deformations in alloys and polymers with memory of the shape //Uchenyye zapiski KnAGTU – Scholarly Notes of KNASTU. 2018. V. 1. № 3 (35). P. 6–17.
- Matveenko V.P., Smetannikov O. Yu., Trufanov N.A., Shardakov I.N. Termomekhanika polimernykh materialov v usloviyakh relaksatsionnogo perekhoda [Thermomechanics of polimer materials in a relaxation transition]. M.: Fizmatlit, 2009. 176 p.
- Oniskiv V.D., Stolbov V.Iu., Hatiamov R.K. On one control problem of the process of gamma irradiation of the polyethylene // Prikladnaya matematika i voprosy upravleniya – Applied Mathematics and Control Sciences. 2019. № 3. P. 119–130. https://doi.org/10.15593/2499-9873/2019.3.07
- Malkin A.Ya. The state of the art in the rheology of polymers: Achievements and challenges // Polymer Science Series A. 2009. V. 51. С. 80–102. https://doi.org/10.1134/S0965545X09010076
- Adamov A.A., Matveyenko V.P., Trufanov N.A., Shardakov I.N. Metody prikladnoy vyazkouprugosti [Applied viscoelasticity methods]. Ekaterinburg: UrO RAN, 2003. 411 p.
- Kuznecov V.V. Giperuprugie modeli polimernyh materialov // Energoeff. i resursosber. tekhnol. i sist.: sb. nauch. tr. Mezhdunar. nauch.-prakt. konf., posv. pam. d. t. n., prof. F.H. Burumkulova. 2016. P. 275–281.
- Rivlin R.S. Large Elastic Deformations of Isotropic Materials. IV. Further developments of the general theory, Philosophical Transactions of the Royal Society of London. // Collected Papers of R.S. Rivlin. 1947. P. 90–108. https://doi.org/10.1007/978-1-4612-2416-7_8
- Ogden R.W. Large Deformation Isotropic Elasticity – On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids // Proc. R. Soc. A: Math. Phys. Eng. Sci. 1972. V. 326. № 1567. P. 565–584. https://doi.org/10.1098/rspa.1972.0026
- Arruda E.M., Boyce M.C. A three-dimensional model for the large stretch behavior of rubber elastic materials // J. Mech. Phys. Solids. 1993. V. 41. № 2. P. 389–412. https://doi.org/10.1016/0022-5096(93)90013-6
- Gent A.N. A new constitutive relation for rubber // Rubber Chem. Technol. 1996. V. 69 № 1. P. 59–61. https://doi.org/10.5254/1.3538357
- Yeoh O.H. Some Forms of the Strain Energy Function for Rubber // Rubber Chem. Technol. 1993. V. 66. № 5. P. 754–771. https://doi.org/10.5254/1.3538343
- Blatz P.J., Ko W.L. Application of Finite Elastic Theory to the Deformation of Rubbery Materials // Trans. Soc. Rheol. 1962. V. 6. № 1. P. 223–251. https://doi.org/10.1122/1.548937
- Macosko C.W. Rheology: principles, measurement and applications. Wiley-VCH, 1994. 578 p.
- Chong Yin. Data fitting and simulation of hyperelastic and viscoelastic properties of soft tissue // BIC 2022: 2022 2nd Int. Conf. on Bioinformatics and Intelligent Computing. 2022. P. 241–246. https://doi.org/10.1145/3523286.3524548
- Reisewitz T., Pauli A., Siebert G. Calibration of a Hyperviscoelastic Material Model for Silicone Structural Glazing Joints in the Context of Earthquakes // Challenging Glass Conference Proceedings. 2024. V. 9. P. 1–10. https://doi.org/10.47982/cgc.9.538
- Pelevin A.G., Shadrin V.V. Features of using the viscoelastic material model in the ANSYS software package // Bulletin of Perm University. Mathematics. Mechanics. Computer science. 2021. № 3 (54). P. 52–57. https://doi.org/10.17072/1993-0550-2021-3-52-57
- Adamov A.A. Issledovanie i modelirovanie nestacionarnogo termomekhanicheskogo povedeniya vyazkouprugih rezinopodobnyh materialov i elementov konstrukcij pri konechnyh deformaciyah: dis. …d-ra fiz.-mat. nauk. Perm’, 2004.
- Simo J.C. On fully three-dimensional finite strain viscoelastic damage model: Formulation and computational aspects // Comput. Methods Appl. Mech. Eng. 1987. V. 60. № 2. P. 153–173. https://doi.org/10.1016/0045-7825(87)90107-1
- Holzapfel G.A. On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures // Int. J. Num. Methods Eng. 1996. V. 39. № 22. P. 3903–3926. https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22%3C3903::AIDNME34%3E3.0.CO;2-C
Supplementary files


