SCALE EFFECTS OF FIBROUS AND DISPERSED MATERIALS WITH AN INTERFACE LAYER
- Authors: Vlasov A.N.1, Volkov-Bogorodskiy D.B.1
-
Affiliations:
- Institute of Applied Mechanics of Russian Academy of Sciences
- Issue: No 6 (2025)
- Pages: 37–60
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/361318
- DOI: https://doi.org/10.7868/S1026351925060037
- ID: 361318
Cite item
Abstract
The paper considers anomalous scale effects for fibrous and dispersed nanomaterials with a gradient interphase layer caused by the dispersion and aggregation of inclusions. To model these effects and evaluate the mechanical properties of dispersed and fibrous composites with interphase layer, an analytical-numerical algorithm has been developed that allows one to obtain an exact solution to the cell problem in the Bakhvalov asymptotic homogenization method. This algorithm is used to evaluate and simulate the effective characteristics of structurally inhomogeneous materials taking into account the aggregation of the filling nanoparticles, when non-classical effects of strengthening occur at ultra-small volume fractions. The obtained solutions also allow one to calculate the stress concentration tensor that reproduces the distribution features of local stresses near inclusions taking into account the gradient properties of the interphase layer. It is of great importance for evaluating the strength characteristics of such materials. Using the developed algorithm a study was conducted of the anomalous properties of polymethyl methacrylate filled with multilayer carbon nanotubes, and for the first time, the presence of two enhancement waves of the mechanical properties for the composite with ultra-low filler fractions was noted, which is confirmed by the similar behavior of metal-matrix composites based on an aluminum matrix and oxide fillers.
About the authors
A. N. Vlasov
Institute of Applied Mechanics of Russian Academy of Sciences
Author for correspondence.
Email: bah1955@yandex.ru
Moscow, Russia
D. B. Volkov-Bogorodskiy
Institute of Applied Mechanics of Russian Academy of Sciences
Email: v-b1957@yandex.ru
Moscow, Russia
References
- Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions // Acta Metall. 1973. V. 21. № 5. P. 571–574. https://doi.org/10.1016/0001-6160(73)90064-3
- Eshelby J. The determination of the elastic field of an ellipsoidal inclusion, and related problems // Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1957. V. 241. № 1226. P. 376–396. https://doi.org/10.1098/rspa.1957.0133
- Takayanagi M., Uemura S., Minami S. Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer // J. P olymer Sci. Part C: Polymer Symposia. 1964. V. 5. № 1. P. 113–122. https://doi.org/10.1002/polc.5070050111
- Halpin J, Kardos J. The Halpin–Tsai equations: a review // Poly. Eng. Sci. 1976. V. 16. № 5. P. 344–352. https://doi.org/10.1002/PEN.760160512
- Шермегор Т.Д. Теория упругости микронеоднородных сред. М.: Наука, 1977. 400 с.
- Кристенсен Р. Введение в механику композитов. М.: Мир, 1982. 334 с.
- Chatzigeorgiou, G., Siedel, G.D., Lagoudas D. Effective mechanical of “fuzzy fiber” composites // Compos. Part B. 2012. V. 43. № 6. P. 2577–2593. https://doi.org/10.1016/j.compositesb.2012.03.001
- Volkov-Bogorodskii D.B., Lurie S.A. Solution of the Eshelby Problem in Gradient Elasticity for Multilayer Spherical Inclusions // Mechanics of Solids. 2016. V. 51. № 2. P. 161–176. https://doi.org/10.3103/S0025654416020047
- Lurie S.A., Volkov-Bogorodskiy D.B., Menshykov O., SolyaevY.O., Aifantis E.C. Modeling the effective mechanical properties of “fuzzy fiber” composites across scales length // Compos. Part B. 2018. V. 142. № 1. P. 24–35. https://doi.org/10.1016/j.compositesb.2017.12.029
- Volkov-Bogorodskiy D.B., Lurie S.A., Kriven G.I. Modeling the effective dynamic properties of fiber composites modified across length scales // Nanoscience and Technology: An International Journal. 2018. V. 9. № 2. P. 117–138. https://doi.org/10.1615/NanoSciTechnolIntJ.2018026537
- Бахвалов Н.С., Панасенко. Г.П. Осреднение процессов в периодических средах. М.: Наука, 1984. 352 с.
- Бахвалов Н.С. Осреднение дифференциальных уравнений с частными производными с быстро осциллирующими коэффициентами // Докл. АН СССР. 1975. Т. 221. № 3. С. 516–519.
- Власов А.Н., Мерзляков В.П. Усреднение деформационных и прочностных свойств в механике скальных пород. М.: Изд-во Ассоциации строительных вузов, 2009. 208 с.
- Vlasov A.N., Volkov-Bogorodsky D.B. Application of the asymptotic homogenization in a parametric space to the modeling of structurally heterogeneous materials // J. Comput. Appl. Math. 2021. V. 390. P. 113191. https://doi.org/10.1016/j.cam.2020.113191
- Власов А.Н., Волков-Богородский Д.Б., Корнев Ю.В. Влияние углеродных добавок на механические характеристики эпоксидного связующего // Изв. РАН. МТТ. 2020. № 3. С. 92–103. https://doi.org/10.31857/S0572329920030198
- Rodriguez-Ramos R., Otero J.A., Cruz-Gonzalez O.L., Guinovart-Diaz R., BravoCastillero J., Sabina FJ., Padilla P., Lebon F., Sevostianov I. Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method // Int. J. Solids Struct. 2020. V. 190. P. 281–290. https://doi.org/10.1016/j.ijsolstr.2019.11.014
- Vlasov A.N., Volkov-Bogorodsky D.B., Savatorova V.L Calculation of the effective properties of thermo-viscoelastic composites using asymptotic homogenization in parametric space // Mech. Time-Depend. Mater. 2022. V. 26. P. 565–591. https://doi.org/10.1007/s11043-021-09501-4
- Vlasov A.N., Volkov-Bogorodsky D.B. Modeling the effective properties of fibrous composite materials with a functionally graded interphase layer based on the Eshelby problem // AIP Conf. Proc. 2022. V. 2611. № 1. P. 100006. https://doi.org/10.1063/5.0120421
- Волков-Богородский Д.Б. Метод радиальных множителей в задачах механики неоднородных сред с многослойными включениями // Мех. комп. матер. констр. 2016. Т. 22. № 1. С. 19–39.
- Volkov-Bogorodskiy D.B. Structural analysis in the problems of gradient elasticity // Lobachevskii J. Math. 2023. V. 44. № 6. P. 2480–2500. https://doi.org/10.1134/S1995080223060446
- Volkov-Bogorodskiy D.B. Development Trefftz method for problems of nonhomogeneous media // Lobachevskii J. Math. 2024. V. 45. № 5. P. 2429–2437. https://doi.org/10.1134/S1995080224602534
- Победря Б.Е. Механика композиционных материалов. М.: Изд-во Моск. ун-та, 1984. 336 с.
- Лехницкий С.Г. Теория упругости анизотропного тела. М.: Наука, 1977. 416 с.
- Мальцев И.А. Основы линейной алгебры. М.: Наука, 1970. 400 с.
- Trefftz E. Ein Gegenstuck zum Ritzschen Verfahren // Proc. 2nd Int. Cong. Appl. Mech. Zurich, 1925. P. 131–137.
- Эшелби Дж. Континуальная теория дислокаций. М.: ИЛ, 1963. 248 с.
- Кристенсен Р. Введение в механику композитов. М.: Мир, 1982. 334 с.
- Christensen R.M., Lo K.H. Solutions for effective shear properties in three phase sphere and cylinder models // J. Mech. Phys. Solids. 1979. V. 27. № 4. P. 315–330. https://doi.org/10.1016/0022-5096(79)90032-2
- Hervé E., Zaoui A. Elastic behavior of multiply coated fiber reinforced composites // Int. J. Eng. Sci. 1995. V. 33. № 10. P. 1419–1433. https://doi.org/10.1016/0020-7225(95)00008-L
- Papkovich P.F. Solution générale des équations différentielles fondamentales de l’élasticité, exprimeé par trois fonctiones harmoniques // C.R. l’Académie des Sci. Paris. 1932. V. 195. P. 513–515.
- Neuber H. Ein neuer ansatz zur losung raumlicher probleme der elastizitatstheorie // ZAMM. 1934. V. 14. № 4. P. 203–212. https://doi.org/10.1002/zamm.19340140404
- Власов А.Н., Волков-Богородский Д.Б., Мнушкин М.Г. Программный комплекс “Uway”. Свидетельство о государственной регистрации программы для ЭВМ. Федеральная служба по интеллектуальной собственности, патентам и товарным знакам. № 2011611833. 28.02.2011.
- Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999. 548 с.
- Blond D. Barron V., Ruether M., Ryan K.P., Nicolosi V., Blau W.J., Coleman J.N. Enhancement of modulus strength, and toughness in poly(methyl methacrylate)based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes // Adv. Funct. Mater. 2005. V. 16. № 12. P. 1608–1614. https://doi.org/10.1002/adfm.200500855
- Qian D., Dickey E.C., Andrews R., Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites // Appl. Phys. Lett. 2000. V. 76. № 20. P. 2868–2870. https://doi.org/10.1063/1.126500
- Mikitaev A.K., Kozlov G.V., Zaikov G.E. Polymer Nanocomposites: Variety of Structural Forms and Applications. N.Y.: Nova Science Publishers, 2008. 319 p.
- Dolbin I.V., Karnet Yu.N., Kozlov G.V., Vlasov A.N. Mechanism of growth of interfacial regions in polymer/carbon nanotube nanocomposites // Comp. Mech. Comput. Appl. Int. J. 2019. V. 10. № 3. P. 213–220. https://doi.org/10.1615/CompMechComputApplIntJ.2018029234
- Першина С.В. Белогубцев С.Ф. Федоткин И.В. Насыпная плотность углеродных наноматериалов // Междунар. студ. научн. вестник. 2015. № 3 (ч. 2). С. 207–208.
- Ткачев А.Г. и др. Углеродные наноматериалы серии “Таунит”: Производство и применение // Химия и химич. технология. 2013. Т. 56. Вып. 4. С. 55–59.
- Хузин А.Ф. и др. Диспергируемость глобул многослойных углеродных нанотрубок различных производителей // Изв. КГАСУ. Строительные материалы и изделия. 2015. T. 33. № 3. С. 164–171.
- Kozlov G.V., Dolbin I.V., Karnet Yu.N., Vlasov A.N. Relationship between the applied stress transfer and the nanofiller aggregation level for polymer/nanocomposites // Comp. Mech. Comp. Appl. Int. J. 2020. V. 11. № 2. P. 129–135. https://doi.org/10.1615/CompMechComputApplIntJ.2020034572
- Witten T.A., Rubinstein M., Colby R.H. Reinforcement of rubber by fractal aggregates // J. Phys. II France. 1993. V. 3. № 3. P. 367–383. https://doi.org/10.1051/jp2:1993138
- Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes // Macromolecules. 2006. V. 39. № 16. P. 5194–5205. https://doi.org/10.1021/ma060733p
- Schaefer D.W., Justice R.S. How are nanocomposites? // Macromolecules. 2007. V. 40. № 24. P. 8501–8517. https://doi.org/10.1021/ma070356w
- Lurie S ., Volkov-Bogorodskiy D ., Solyaev Yu., Rizahanov R ., Agureev L . Multiscale modelling of aluminium-based metal–matrix composites with oxide nanoinclusions // Comput. Mater. Sci. 2016. V. 116. P. 62–73. https://doi.org/10.1016/j.commatsci.2015.12.034
Supplementary files


