USING A MOVING MASS TO CHANGE THE SPATIAL ORIENTATION OF A RIGID BODY SUBJECT TO TIME-DEPENDENT EXTERNAL FORCES
- Authors: Shmatkov A.M.1
-
Affiliations:
- Institute for Problems in Mechanics, RAS
- Issue: No 6 (2025)
- Pages: 22–36
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/361317
- DOI: https://doi.org/10.7868/S3034543X25060022
- ID: 361317
Cite item
Abstract
About the authors
A. M. Shmatkov
Institute for Problems in Mechanics, RAS
Email: shmatkov@ipmnet.ru
Moscow, Russia
References
- Xu J., Fang H. Improving performance: recent progress on vibration-driven locomotion systems // Nonlinear Dyn. 2019. V. 98. № 4. P. 2651–2669. https://doi.org/10.1007/s11071-019-04982-y
- Liu Y., Chernousko F.L., Terry B.S., Chávez J.P. Special issue on self-propelled robots: from theory to applications // Meccanica. 2023. V. 58. P. 317–319. https://doi.org/10.1007/s11012-022-01631-4
- Schmoeckel F., Worn H. Remotely controllable mobile microrobots acting as nano positioners and intelligent tweezers in scanning electron microscopes (SEMs) / Proceeding of international conference robotics and automation. 2001. IEEE, New York. P. 3903–3913.
- Lampert P., Vakebtutu A., Lagrange B., De Lit P., Delchambre A. Design and performances of a one-degree-of-freedom guided nano-actuator // Robot. Comput. Integr. Manuf. 2003. V. 19. № 1–2. P. 89–98. https://doi.org/10.1016/s0736-5845(02)00065-0
- Vartholomeos P., Papadopoulos E. Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators // J. Dyn. Syst. Meas. Control. 2006. V. 128. № 1. P. 122–133. https://doi.org/10.1115/1.2168472
- Gradetsky V., Solovtsov V., Kniazkov M., Rizzotto G.G., Amato P. Modular design of electromagnetic mechatronic microrobots / Proceedings of 6th international conference climbing and walking robots (CLAWAR). 2003. Catania, Italy. P. 651–658.
- Chernousko F.L. On the motion of a body containing movable internal mass // Dokl. Phys. 2005. V. 50. № 11. P. 593–597. https://doi.org/10.1134/1.2137795
- Bolotnik N.N., Figurina T.Yu., Chernousko F.L. Optimal control of the rectilinear motion of a two-body system in a resistive medium // J. Appl. Math. Mech. 2012. V. 76. № 1. P. 1–14. https://doi.org/10.1016/j.jappmathmech.2012.03.001
- Li H., Furuta K., Chernousko F.L. Motion generation of the Capsubot using internal force and static friction / Proceedings of the 45th IEEE conference on decision and control. 2006. San Diego, USA. P. 6575–6580. https://doi.org/10.1109/cdc.2006.377472
- Zimmerman K., Zeidis I., Bolotnik N., Pivovarov M. Dynamics of a two-module vibration-driven system moving along a rough horizontal plane // Multibody Syst. Dyn. 2009. V. 22. № 2. P. 199–219. https://doi.org/10.1007/s11044-009-9158-2
- Chernousko F.L. Two-dimensional motions of a body containing internal moving masses // Meccanica. 2016. V. 51. № 12. P. 3203–3209. https://doi.org/10.1007/s11012-016-0511-2
- Chernousko F.L. Optimal control of the motion of a double-mass system // Dokl. Math. 2018. V. 97. № 3. P. 295–299. https://doi.org/10.1134/s1064562418030195
- Shmatkov A.M. Time-optimal rotation of a body by displacement of a mass point // Dokl. Phys. 2018. V. 63. № 8. P. 337–341. https://doi.org/10.1134/s1028335818080062
- Bolotnik N., Figurina T. Controllabilty of a two-body crawling system on an inclined plane // Meccanica. 2023. V. 58. P. 321–336. https://doi.org/10.1007/s11012-021-01466-5
- Figurina T., Knyazkov D. Periodic regimes of motion of capsule system on rough plane // Meccanica. 2023. V. 58. P. 493–507. https://doi.org/10.1007/s11012-022-01572-y
- Chernousko F.L. Controlling the orientation of a solid using the internal mass // J. Appl. Mech. Tech. Phys. 2019. V. 60. № 2. P. 278–283. https://doi.org/10.1134/s0021894419020093
- Naumov N.Yu., Chernousko F.L. Reorientation of a rigid body controlled by a movable internal mass // J. Comput. Syst. Sci. Int. 2019. V. 58. № 2. P. 252–259. https://doi.org/10.1134/s106423071902014x
- Chernousko F. Reorientation of a rigid body by means of auxiliary masses // Meccanica. 2023. V. 58. P. 387–395. https://doi.org/10.1007/s11012-022-01501-z
- Shmatkov A.M. Objects changing the spatial orientation of a solid body by using mobile mass // J. Comput. Syst. Sci. Int. 2020. V. 59. № 4. P. 622–629. https://doi.org/10.1134/s1064230720040139
- Абезяев И.Н. Об одной возможности ориентации околоземного космического аппарата по магнитному полю земли // Изв. РАН. МТТ. 2022. № 6. С. 54–62. https://doi.org/10.31857/S0572329922050026
- Левский М.В. Кватернионное решение задачи оптимального управления ориентацией твердого тела (космического аппарата) с комбинированным критерием качества // Изв. РАН. МТТ. 2024. № 1. С. 197–222. https://doi.org/10.31857/S1026351924010115
- Белецкий В.В., Яншин А.М. Влияние аэродинамических сил на вращательное движение искусственных спутников. Киев: Наук. думк., 1984. 187 с.
- Заболотнов Ю.М., Назарова А.А., Ван Ч. Анализ динамики и управление при развертывании кольцевой тросовой группировки космических аппаратов // Изв. РАН. МТТ. 2023. № 4. С. 110–124. https://doi.org/10.31857/S0572329922600670
- Шматков А.М. Пространственная переориентация твердого тела посредством подвижной массы при наличии внешних сил, заданных как функции времени // ДАН. 2024. Т. 517. № 4. С. 59–64. https://doi.org/10.31857/S2686740024040098
- Shmatkov A.M. Changing the spatial orientation of a rigid body using one moving mass in the presence of external forces // Meccanica. 2023. V. 58. P. 441–450. https://doi.org/10.1007/s11012-022-01524-6
- Маркеев А.П. Теоретическая механика. М.: ЧеРо, 1999. 572 с.
- Журавлев В.Ф. Основы теоретической механики. М.: ФИЗМАТЛИТ, 2008. 304 с.
Supplementary files


