On the influence of viscous filler on the impact penetration resistance of flexible metamaterials with auxetic properties
- 作者: Ivanova S.Y.1, Osipenko K.Y.1, Banichuk N.V.1, Lisovenko D.S.1
-
隶属关系:
- Ishlinsky Institute for Problems in Mechanics of the RAS
- 期: 编号 2 (2025)
- 页面: 267-278
- 栏目: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/295954
- DOI: https://doi.org/10.31857/S1026351925020156
- EDN: https://elibrary.ru/aoudqx
- ID: 295954
如何引用文章
详细
The properties of flexible metamaterials with negative Poisson’s ratio (with auxetic structure based on a concave hexagonal cell) to resist normal punching by a rigid spherical impactor were experimentally investigated. Samples with a chiral structure fabricated using a 3D printer and made from thermoplastic polyurethane (TPU 95A plastic), with cells filled with air or gelatin were compared for their ability to reduce the kinetic energy of impactors. The experiments were conducted for two velocity regimes. It was found that gelatin filling of auxetic chiral samples made of TPU 95A plastic (in contrast to previously investigated rigid metamaterials based on PLA plastic) does not lead to enhancement of protective properties. According to the results of the experiments conducted for two speed modes, the most effective in terms of resistance to penetration by the impactor were flexible and lightweight samples made of thermoplastic polyurethane filled with air.
作者简介
S. Ivanova
Ishlinsky Institute for Problems in Mechanics of the RAS
Email: lisovenk@ipmnet.ru
俄罗斯联邦, Moscow
K. Osipenko
Ishlinsky Institute for Problems in Mechanics of the RAS
Email: lisovenk@ipmnet.ru
俄罗斯联邦, Moscow
N. Banichuk
Ishlinsky Institute for Problems in Mechanics of the RAS
Email: lisovenk@ipmnet.ru
俄罗斯联邦, Moscow
D. Lisovenko
Ishlinsky Institute for Problems in Mechanics of the RAS
编辑信件的主要联系方式.
Email: lisovenk@ipmnet.ru
俄罗斯联邦, Moscow
参考
- Lim T.-C. Auxetic Materials and Structures. Singapore: Springer, 2015. https://doi.org/10.1007/978-981-287-275-3
- Kolken H.M.A., Zadpoor A.A. Auxetic Mechanical Metamaterials // RSC Adv. 2017. V. 7. No. 9. P. 5111–5129. https://doi.org/10.1039/C6RA27333E
- Ren X., Das R., Tran P., et al. Auxetic Metamaterials and Structures: A Review // Smart Mater. Struct. 2018. V. 27. № 2. P. 023001. https://doi.org/10.1088/1361-665X/aaa61c
- Wu W., Hu W., Qian G. et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review // Mater. Des. 2019. V. 180. P. 107950. https://doi.org/10.1016/j.matdes.2019.107950
- Gorodcov V.A., Lisovenko D.S. Auxetics among materials with cubic anisotropy // Bulletin of the RAS. Mechanics of Solids. 2020. № 4. P. 7–24. https://doi.org/10.31857/S0572329920040054
- Shitikova M.V. Fractional Operator Viscoelastic Models in Dynamic Problems of Mechanics of Solids: A Review // Mechanics of Solids. 2022. № 1. P. 1–33. https://doi.org/10.31857/S0572329921060118
- Novak N., Vesenjak M., Ren Z. Auxetic cellular materials-a review // Strojniški vestnik – Journal of Mechanical Engineering. 2016. V. 62. № 9. P. 485–493. https://doi.org/10.5545/sv-jme.2016.3656
- Kelkar P.U., Kim H.S., Cho K.-H., et. al. Cellular Auxetic Structures for Mechanical Metamaterials: A Review // Sensors. 2020. V. 20. № 11. P. 3132. https://doi.org/10.3390/s20113132
- Joseph A., Manesh V., Harursampath D. On the application of additive manufacturing methods for auxetic structures: A review // Adv. Manuf. 2021. V. 9. № 3. P. 342–368. https://doi.org/10.1007/s40436-021-00357-y
- Ivanova S.Yu., Osipenko K.Yu., Kuznetsov V.A., Solovyov N.G., Banichuk N.V., Lisovenko D.S. Experimental Investigation of the Properties of Auxetic and Non-Auxetic Metamaterials Made of Metal During Penetration of Rigid Strikers // Mechanics of Solids. 2023. № 2. P. 524–528. https://doi.org/10.31857/S0572329922600773
- Ivanova S.Yu., Osipenko K.Yu., Demin A.I., Banichuk N.V., Lisovenko D.S. Studying the Properties of Metamaterials with a Negative Poisson’s Ratio when Punched by a Rigid Impactor // Mechanics of Solids. 2023. № 5. P. 1536–1544. https://doi.org/10.31857/S0572329923600366
- Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Experimental Study of the Properties of Metamaterials Based on PLA Plastic when Perforated by a Rigid Striker // Mechanics of Solids. 2024. № 4. P. 1967–1972.
- Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Investigation of the effect of a viscous filler on the punching process of auxetic and non-auxetic metamaterials // Mech. Solids. 2024. V. 59. № 7. P. 3727–3734. https://doi.org/10.1134/S0025654424606633
- Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Investigation of the influence of viscous filler on the mechanical properties of metamaterials with negative and positive Poisson’s ratio when penetrated by a rigid impactor // Bulletin of I.Y. Yakovlev Chuvash State Pedagogical University. Series: Mechanics of Limit State. 2024. № 4 (62). P. 62–75. https://doi.org/10.37972/chgpu.2024.62.4.005 EDN: SFQXCI
- Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Effect of temperature of metamaterials based on flexible TPU 95A plastic on resistance to penetration by a rigid impactor // Mechanics of Solids. 2025. № 1. https://doi.org/10.1134/S0025654424606797
- Gao Y., Huang H. Energy absorption and gradient of hybrid honeycomb structure with negative Poisson’s ratio // Mech. Solids. 2022. V. 57. № 5. P. 1118–1133. https://doi.org/10.3103/S0025654422050053
- Xing Y., Deng B., Cao M. et al. Influence of structural and morphological variations in orthogonal trapezoidal aluminum honeycomb on quasi-static mechanical properties // Mech. Solids. 2024. V. 59. № 1. P. 445–458. https://doi.org/10.1134/S0025654423602550
- Skripnyak V.V., Chirkov M.O., Skripnyak V.A. Modeling of mechanical response of auxetic metamaterials to dynamic impacts // PNRPU Bulletin. Mekhanika. 2021. № 2. P. 144–152. https://doi.org/10.15593/perm.mech/2021.2.13
- Imbalzano G., Tran P., Lee P.V.S. et. al. Influences of material and geometry in the performance of auxetic composite structure under blast loading // Appl. Mech. Mater. 2016. V. 846. P. 476–481. https://doi.org/10.4028/www.scientific.net/amm.846.476
- Zhao X., Gao Q., Wang L. et. al. Dynamic crushing of double-arrowed auxetic structure un-der impact loading // Mater. Des. 2018. V. 160. P. 527–537. https://doi.org/10.1016/j.matdes.2018.09.041
- Li C., Shen H.S., Wang H. Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core // Nonlinear Dyn. 2020. V. 100. P. 3235–3252. https://doi.org/10.1007/s11071-020-05686-4
- Qiao J.X., Chen C.Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs // Inter. J. Impact Eng. 2015. V. 83. P. 47–58. https://doi.org/10.1016/j.ijimpeng.2015.04.005
- Novak N., Starcevic L., Vesenjak M. et. al. Blast response study of the sandwich composite panels with 3D chiral auxetic core // Compos. Struct. 2019. V. 210. P. 167–178. https://doi.org/10.1016/j.compstruct.2018.11.050
- Yu Y., Fu T., Wang S., Yang C. Dynamic response of novel sandwich structures with 3D sinusoid-parallel-hybrid honeycomb auxetic cores: The cores based on negative Poisson’s ratio of elastic jump // Eur. J. Mech. – A/Solids. 2025. V. 109. P. 105449. https://doi.org/10.1016/j.euromechsol.2024.105449
- Shen Z.Y., Wen Y.K., Shen L.Y. et. al. Dynamic response and energy absorption characteristics of auxetic concave honeycomb pad for ballistic helmet under shock wave and bullet impact // Mech. Solids. 2024. V. 59. № 5. P. 3050–3067. https://doi.org/10.1134/S0025654424605159
- Jiang Q., Hao B., Chen G. et. al. Analysis of the penetration ability of exponential bullets on TPMS structures with variable density // Mech. Solids. 2024. V. 59. № 5. P. 3198–3211. https://doi.org/10.1134/S0025654424605640
补充文件
