On the equilibria and uniform rotations of a dumbbell-shaped body on a rough horizontal plane with two contact points
- Authors: Burov A.A.1, Nikonov V.I.1, Shalimova E.S.1,2
-
Affiliations:
- FRC CSC RAS
- Lomonosov Moscow State University
- Issue: No 1 (2025)
- Pages: 33-48
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/288510
- DOI: https://doi.org/10.31857/S1026351925010024
- EDN: https://elibrary.ru/taouap
- ID: 288510
Cite item
Abstract
A problem of motion of a dumbbell-shaped body on a horizontal rough plane is considered. It is assumed that the dumbbell is a weightless inextensible rod, with masses being concentrated at two points of it, and there is dry friction between these points and the plane. It is also assumed that a constant force acts perpendicular to the rod on some fixed point on it. The conditions under which the rod is at rest, as well as the conditions under which the rod uniformly rotates around one of its points of support, are determined. The relationship between the magnitude of the angular velocity of uniform rotation and the force providing such a rotation is revealed. Bifurcation diagrams are constructed and analyzed.
Keywords
Full Text

About the authors
A. A. Burov
FRC CSC RAS
Author for correspondence.
Email: jtm@narod.ru
Russian Federation, Moscow
V. I. Nikonov
FRC CSC RAS
Email: nikon_v@list.ru
Russian Federation, Moscow
E. S. Shalimova
FRC CSC RAS; Lomonosov Moscow State University
Email: ekateryna-shalimova@yandex.ru
Russian Federation, Moscow; Moscow
References
- Routh E.J. A treatise on analytical statics with numerous examples. V.1. Second edition. Cambridge: University Press. 1909. 392 p.
- Zhukovskii N.E. Equilibrium conditions for a rigid body based on a fixed plane with a certain area and able to move along this plane with friction // Collected Works: V. 1. Moscow-Leningrad: Gostekhteorizdat. 1949. P. 339–354 (in Russian).
- Pozharitskii G.K. Extension of the principle of Gauß to systems with dry (Coulomb) friction // J. Appl. Math. Mech. 1961. V. 25. № 3. P. 586–607.
- Smyshlyayev A.S., Chernousko F.L. The equilibrium conditions of a rod on a rough plane // J. Appl. Math. Mech. 2002. V. 66. № 2. P. 165–170.
- Zhuravlev V.F. 500 years of the history of the dry friction law // Herald of the Bauman Moscow State Technical University, Series Natural Sciences. 2014. № 2. P. 21–31 (in Russian).
- Jellett J.H. A treatise on the theory of friction. Dublin: Hodges, Foster, and Co & L.: Macmillan and Co. 1872. 220 p.
- Painlevé P. Leçons sur le frottement. Paris: A.Hermann. 1895. 132 p.
- Bolotov E.A. The motion of a material plane figure subject to constraints with friction // Mat. Sbornik. l906. V. 25. № 4. P. 562–708 (in Russian).
- Andronov V.V., Zhuravlev V.F. Dry friction in problems of mechanics. R&C Dynamics, Institute of Computer Science, Moscow–Izhevsk. 2010. 184 p (in Russian).
- Ivanov, A. P. Fundamentals of the theory of systems with friction. R&C Dynamics, Institute of Computer Science, Moscow – Izhevsk. 2011. 304 p (in Russian).
- Sumbatov A. S., Yunin E. K. Selected problems of mechanics of systems with dry friction. Fizmatlit. Moscow. 2013. 200 p (in Russian).
- Rozenblat G.M. Dynamic systems with dry friction. R&C Dynamics, Institute of Computer Science, Moscow–Izhevsk. 2006. 203 p (in Russian).
- Rozenblat G.M. Dry friction and unilateral constraints in solid mechanics. URSS. Moscow. 2011. 204 p (in Russian).
- Ivanov A.P. Stability of Zhukovskii bench // Dokl. Phys. 2015. V. 60. No. 9, P. 405–406.
- Rozenblat G.M. Equilibrium of a Zhukovskii bench // Doklady Physics. 2017. V. 62. № 2. P. 95–101.
- Field P. On the motion of a disc with three supports on a rough plane // Phys. Rev. 1912. V. 35. P. 177–184.
- Rozenblat G.M. The integration of equations of motion of a body with three supports on a rough plane // Dokl. Phys. 2010. V. 55. № 12. P. 602–605.
- Rozenblat G.M. The motion of a body supported at three points on a rough plane // J. Appl. Math. Mech. 2011. V. 75. № 2. P. 176–179.
- Wittenburg J. Ebene Bewegungen bei flächenhaft verteilten Reibungskräften // Z. Angew. Math. Phys. 1970. Bd. 50. P. 637–640.
- Ishlinskii A.Yu, Sokolov B.N., Chernousko F.L. On motion of plane bodies with dry friction // Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1981. № 4. P. 17–28 (in Russian).
- Farkas Z., Bartels G., Unger T., Wolf D. Frictional coupling between sliding and spinning motion // Phys. Rev. Lett. 2003. V. 90. № 24. Art. 248302. P. 4.
- Weidman P.D., Malhotra C.P. Regimes of terminal motion of sliding spinning disks // Phys. Rev. Lett. 2005. V. 95. № 26. Art. 264303. P. 4.
- Treschev D.V., Erdakova N.N., Ivanova T.B. On the final motion of cylindrical solids on a rough plane // Rus. J. Nonlin. Dyn. 2012. V. 8. № 3. P. 585–603 (in Russian).
- Borisov A.V., Erdakova N.N., Ivanova T.B., Mamaev I.S. The dynamics of a body with an axisymmetric base sliding on a rough plane // Regul. Chaotic Dyn. 2014. V. 19. № 6. P. 607–634.
- Borisov A.V., Karavaev Yu.L., Mamaev I.S., Erdakova N.N., Ivanova T. B., Tarasov V.V. Experimental investigation of the motion of a body with an axisymmetric base sliding on a rough plane // Regul. Chaotic Dyn. 2015. V. 20. № 5. P. 518–541.
- Johnston G.W. The dynamics of a curling stone // Can. Aeronaut. Space J. 1981. V. 27. № 2. P. 144–160.
- Denny M. Curling rock dynamics // Canadian J. Phys. 1998. V. 76. № 4. P. 295–304.
- Penner A.R. The physics of sliding cylinders and curling rocks // Amer. J. Phys. 2001. V. 69. № 3. P. 332–339.
- Ivanov A.P., Shuvalov N.D. On the motion of a heavy body with a circular base on a horizontal plane and riddles of curling // Rus. J. Nonlin. Dyn. 2011. Vol. 7. № 3. P. 521–530 (in Russian).
- Chernousko F.L. Equilibrium conditions for a body on a rough plane // Izv. RAN. MTT [Mechanics of Solids]. 1988. № 6. P. 6–17 (in Russian).
- Leine R.I., van Campen D.H. Bifurcation phenomena in non-smooth dynamical systems // Europ. J. Mechanics A. Solids. 2006. V. 25. P. 595–616.
- Leine R.I. Bifurcations of equilibria in non-smooth continuous systems // Physica D. 2006. V. 223. P. 121–137.
- Ivanov A. Bifurcations in systems with friction: Basic models and methods // Regul. Chaotic Dyn. 2009. V. 14. № 6. P. 656–672.
- Burov A.A. On bifurcations of relative equilibria of a heavy bead sliding with dry friction on a rotating circle // Acta mechanica. 2010. V. 212. P. 349–354. https://doi.org/10.1007/s00707-009-0265-1
- Burov A.A., Yakushev I.A. Bifurcations of the relative equilibria of a heavy bead on a rotating hoop with dry friction // J. Appl. Math. Mech. 2014. V. 78. № 5. P. 460–467. https://doi.org/10.1016/j.jappmathmech.2015.03.004
- Balandin D.V., Shalimova E.S. Bifurcations of the relative equilibria of a heavy bead on a hoop uniformly rotating about an inclined axis with dry friction // J. Appl. Math. Mech. 2015. V. 79. № 5. P. 440–445. https://doi.org/10.1016/j.jappmathmech.2016.03.004
- Burov A.A., Shalimova E.S. On the motion of a heavy material point on a rotating sphere (dry friction case) // Regular and Chaotic Dynamics. 2015. V. 20. № 3. P. 225–233. https://doi.org/10.1134/S1560354715030028
- Burov, A.A., Shalimova, E.S. Bifurcations of relative equilibria of a heavy bead on a rotating parabolic bowl with dry friction // Mech. Solids, 2016. V. 51. P. 395–405. https://doi.org/10.3103/S0025654416040038
- Shalimova E.S. On the motion of a material point on a rotating sphere with dry friction (the case of the vertical axis) // Rus. J. Nonlin. Dyn., 2016. V. 12. № 3. P. 369–383 (in Russian). https://doi.org/10.20537/nd1603006
- Burov A.A., Kosenko I.I., Shalimova E.S. Relative equilibria of a massive point on a uniformly rotating asteroid // Dokl. Phys. 2017. V. 62. № 7. P. 359–362. https://doi.org/10.1134/S1028335817070084
- Burov A.A., Nikonov V.I., Shalimova E.S. On the motion of a point particle on a homogeneous gravitating ball with a spherical cavity in the presence of dry friction // Mechanics of Solids. 2021. V. 56. № 8. P. 1587–1598. https://doi.org/10.3103/S0025654421080045
- Burov A.A., Nikonov V.I., Shalimova E.S. On relative equilibria on the surface of a spherical cavity inside a uniformly rotating gravitating ball // Mechanics of Solids. 2022. V. 57. № 8. P. 1862–1872. https://doi.org/10.3103/S002565442208009X
- Burov A. A., Nikonov V. I. Relative equilibria of a heavy point on a uniformly rotating inclined plane // Mechanics of Solids. 2023. V. 58. No. 1. P. 131–139. https://doi.org/10.3103/S0025654422600817.
- Burov A. A., Nikonov V. I. On the relative equilibria of a heavy bead on a uniformly rotating rough spoke // Mechanics of Solids. 2023. V. 58. No. 3. P. 748–753. https://doi.org/10.3103/S0025654422600763.
- Dmitriev N.N. Motion of rod with shifted center of mass over plane with anisotropic friction // Journal of friction and wear. 2007. V. 28. № 4. P. 368–374.
- Dmitriev N.N. Motion of material point and equilibrium of two-mass system under asymmetric orthotropic friction // Journal of friction and wear. 2013. V. 34. № 6. P. 429–437.
Supplementary files
