Spatial vibrations of power transmission conductors with ice deposits

Cover Page

Cite item

Full Text

Abstract

The problem of free spatial vibrations of an overhead power line wire with an asymmetric mass distribution over a cross-section caused by ice deposits on its surface, which give the cross-section an asymmetric shape, is considered. As a result, an eccentricity is formed between the centers of torsional stiffness and mass in the cross section and a dynamic connection of vertical, torsional and “pendulum” vibrations occurs with the output of the wire from the sagging plane. The wire is modeled by a flexible heavy elastic rod that resists only stretching and torsion. The case of a weakly sagging wire is investigated, when the tension and curvature of its centerline can be considered constant within the span. It is also believed that the elasticity of the ice casing is small compared to the elasticity of the wire. The mathematical model is constructed taking into account the interaction of longitudinal, torsional and transverse waves polarized in the vertical and horizontal planes. The relations of the phase velocities of all types of waves are analyzed and a group of particular subsystems determining partial oscillations is identified. The partial and natural frequencies and waveforms of the wire are studied. Analytical solutions to the problem of determining the spectrum of natural frequencies and forms of spatial vibrations are obtained. The effect of the ice casing on the vibration spectrum of the wire is studied. The dependence of the wave number of torsional vibrations on the frequency has been found, which is determined not only by the elastic-inertial, but also by the gravitational factor, which is strongly manifested for wires in long spans, especially those prone to Aeolian vibration (galloping). This circumstance is essential for the analysis of the Aeolian vibration phenomenon from the positions linking the occurrence of dancing by the convergence of the frequencies of torsional and transverse modes during the icing of the wire. It has been shown that the ratio of these frequencies, which cause an auto-oscillatory process, turns out to be significantly more complex.

Full Text

1. Введение. Провода воздушных линий электропередачи в механическом отношении представляют собой сильно натянутые гибкие упругие стержни большого удлинения. Очевидная аналогия со струной качественно верно объясняет их склонность к колебаниям, возбуждаемым ветром, подвижностью подвески на опорах, колебаниями температуры. В соответствии с классификацией CIGRE (Conseil International des Grands Réseaux Électriques) – авторитетной научно-технической ассоциации специалистов-энергетиков всего мира, колебания проводов разделяют на три группы [1]. Одну из них образуют эоловы вибрации – поперечные колебания с амплитудой порядка диаметра провода и с частотой от 5 до 50 Гц, которые возбуждаются периодическим воздействием вихревой дорожки Кармана при поперечном обтекании провода ветровым потоком. Вторую группу образуют так называемые субколебания – нелинейные колебания проводов расщепленных (многопроводных) фаз с частотами от 0.5 до 5 Гц, вызываемые действием аэродинамического (спутного) следа. К третьей, наименее исследованной группе относятся колебания с низкими частотами от 0.2 до 3 Гц с амплитудами порядка нескольких метров. Это явление, называемое галопированием или пляской, наблюдается, как правило, при сочетании ветра и гололедных отложений на поверхности провода, которые придают сечению несимметричную форму и аэродинамическое качество. В результате между центрами крутильной жесткости и массы в сечении образуется эксцентриситет, возникает динамическая связь вертикальных, крутильных и “маятниковых” колебаний с выходом провода из вертикальной плоскости провисания. Феномен галопирования обычно связывают с понижением высоких частот крутильных мод при обледенении провода и с их сближением с низкими частотами поперечных колебаний. Однако изменение соотношения этих частот оказывается существенно более сложным. В совокупности перечисленные факторы считаются причиной развития автоколебаний по типу флаттера. Это представление является в мире энергетики доминирующим [2–6]. Однако известны случаи возникновения пляски совсем в иных условиях, необъяснимые с позиций данной концепции [7].

Как нормирование прочности и эксплуатационного ресурса, так и разработка технических средств парирования колебаний должны основываться на анализе особенностей колебаний проводов во всем актуальном диапазоне частот с учетом изменения динамических характеристик провода вследствие обледенения. Данная статья является продолжением исследований авторов, изложенных в работе [8], и содержит анализ собственных частот колебаний провода на основе модели, учитывающей взаимосвязь различных (парциальных) колебаний, обусловленную изменением динамических характеристик провода при его обледенении.

2. Физическая модель и исходные уравнения. Сталеалюминевый провод типа АС [9] рассматривается как однородный цилиндрический упругий стержень с длиной L и диаметром сечения d, с жесткостями на растяжение B и кручение D, лишенный изгибной жесткости. Определение жесткостей реальных проводов представляет собой самостоятельную сложную задачу, поэтому для крутильной жесткости используется аппроксимация: D=2.7 10 8 d 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebGaeyypa0JaaGOmaiaac6cacaaI3aGaey yXICTaaGymaiaaicdadaahaaWcbeqaaiaaiIdaaaGccaWGKbWaaWba aSqabeaacaaI0aaaaaaa@3B94@ , предложенная в [10, 11]. Для жесткости на растяжение принимается модель параллельного соединения отдельных проволок: B= E Al F Al + E St F St MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGcbGaeyypa0JaamyramaaBaaaleaacaWGbb GaamiBaaqabaGccaWGgbWaaSbaaSqaaiaadgeacaWGSbaabeaakiab gUcaRiaadweadaWgaaWcbaGaam4uaiaadshaaeqaaOGaamOramaaBa aaleaacaWGtbGaamiDaaqabaaaaa@3EC1@ . Рассматривается практически важный случай слабо провисающего провода, когда можно считать его натяжение T S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiaadofaaeqaaaaa@32E7@  и кривизну осевой линии постоянными вдоль пролета, связанными со стрелой провисания f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGMbaaaa@31F5@  соотношением: k S = mg/ T S = 8f/ L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGRbWaaSbaaSqaaiaadofaaeqaaOGaeyypa0 ZaaSGbaeaacaWGTbGaam4zaaqaaiaadsfadaWgaaWcbaGaam4uaaqa baaaaOGaeyypa0ZaaSGbaeaacaaI4aGaamOzaaqaaiaadYeadaahaa Wcbeqaaiaaikdaaaaaaaaa@3C6C@  [3]. Материальная длина провода L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGmbaaaa@31DB@  и расстояние между равновысокими точками подвеса в рамках технической теории считаются совпадающими. Упругость гололедной оболочки мала по сравнению c упругостью провода, поэтому центр крутильной жесткости O ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaceWGpbGbaGaaaaa@31ED@ , принимаемый за полюс сечения, при обледенении остается на оси провода, а центр массы сечения С смещается относительно полюса на величину эксцентриситета Δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHuoaraaa@3270@ . В исходном состоянии (отсутствие обледенения) погонная масса и радиус сечения провода равны m 0 ,  r 0 =d/ 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbWaaSbaaSqaaiaaicdaaeqaaOGaaiilai aabccacaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0ZaaSGbaeaa caWGKbaabaWaaOaaaeaacaaI4aaaleqaaaaaaaa@3908@ , а ось провода располагается в вертикальной плоскости со стрелой провисания f 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGMbWaaSbaaSqaaiaaicdaaeqaaaaa@32DB@ , которой соответствует кривизна k S0 = 8 f 0 / L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGRbWaaSbaaSqaaiaadofacaaIWaaabeaaki abg2da9maalyaabaGaaGioaiaadAgadaWgaaWcbaGaaGimaaqabaaa keaacaWGmbWaaWbaaSqabeaacaaIYaaaaaaaaaa@3935@ . В конечном состоянии (при обледенении) эти параметры приобретают новые значения: m=μ m 0 ,  r=ϑ r 0 ,  f=ϕ f 0 , k S =ϕ k S0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbGaeyypa0dccaGae8hVd0MaamyBamaaBa aaleaacaaIWaaabeaakiaacYcacaqGGaGaaeiiaiaadkhacqGH9aqp cqWFrpGscaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaabccaca qGGaGaamOzaiabg2da9iab=v9aMjaadAgadaWgaaWcbaGaaGimaaqa baGccaGGSaGaaGPaVlaaykW7caaMc8Uaam4AamaaBaaaleaacaWGtb aabeaakiabg2da9iab=v9aMjaadUgadaWgaaWcbaGaam4uaiaaicda aeqaaaaa@5267@ , сечения поворачиваются относительно полюса O ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaceWGpbGbaGaaaaa@31ED@  на угол φ S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFgpGAdaWgaaWcbaGaam4uaaqabaaaaa@33D0@ , переменный по длине, а плоскость провисания отклоняется от вертикали на угол υ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFfpqDaaa@32D6@ .

С поперечным сечением провода связывается натуральный триэдр, образованный единичными векторами касательной τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacqWFepaDaaa@32D5@ , нормали n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFUbaaaa@3787@  и бинормали b=τ×n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFIbGaey ypa0dcceGae4hXdqNaey41aqRaa8NBaaaa@3D51@  с центром в точке оси O ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaceWGpbGbaGaaaaa@31ED@ . Соответственно направлениям осей триэдра вводится локальная (левая) система координат O ˜ xyz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaceWGpbGbaGaacaWG4bGaamyEaiaadQhaaaa@34E7@ , движущаяся относительно глобальной координатной системы OXYZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiwaiaadMfacaWGAbaaaa@3478@ , как показано на рис. 1. В качестве координаты используется длина дуги s осевой линии провода. Рассматриваются свободные колебания, при которых в пролете образуются стоячие продольные, крутильные и поперечные волны.

 

Рис. 1. Положительные направления осей координатных систем и углов поворота.

 

На практике представляет интерес влияние обледенения на собственные частоты колебаний. Изменение частот обусловлено как повышением инерционных характеристик провода, так и изменением стрелы провисания вследствие увеличения веса провода. Поэтому необходимо различать его конфигурации в начальном и конечном состояниях, которые определяются величинами стрел провисания.

Для определения связи между ними запишем условия равновесия провода в сравниваемых состояниях. В рамках технической теории эти условия имеют вид: m 0 g L 2 =64B f 0 f 0 2 f nat 2 / 3 L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbWaaSbaaSqaaiaaicdaaeqaaOGaam4zai aadYeadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaaI2aGaaGinaiaa dkeacaWGMbWaaSbaaSqaaiaaicdaaeqaaOWaaSGbaeaadaqadaqaai aadAgadaqhaaWcbaGaaGimaaqaaiaaikdaaaGccqGHsislcaWGMbWa a0baaSqaaiaad6gacaWGHbGaamiDaaqaaiaaikdaaaaakiaawIcaca GLPaaaaeaadaqadaqaaiaaiodacaWGmbWaaWbaaSqabeaacaaIYaaa aaGccaGLOaGaayzkaaaaaaaa@48A0@  и mg L 2 = 64Bf f 2 f nat 2 / 3 L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbGaam4zaiaadYeadaahaaWcbeqaaiaaik daaaGccqGH9aqpdaWcgaqaaiaaiAdacaaI0aGaamOqaiaadAgadaqa daqaaiaadAgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGMbWaa0 baaSqaaiaad6gacaWGHbGaamiDaaqaaiaaikdaaaaakiaawIcacaGL PaaaaeaadaqadaqaaiaaiodacaWGmbWaaWbaaSqabeaacaaIYaaaaa GccaGLOaGaayzkaaaaaaaa@4606@ , где f nat MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGMbWaaSbaaSqaaiaad6gacaWGHbGaamiDaa qabaaaaa@34F3@  – стрела в натуральном состоянии (при отсутствии деформаций). Исключая f nat MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGMbWaaSbaaSqaaiaad6gacaWGHbGaamiDaa qabaaaaa@34F3@ , придем к уравнению для определения коэффициента изменения стрелы провисания ϕ=f/ f 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFvpGzcqGH9aqpdaWcgaqaaiaadAgaae aacaWGMbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@36AF@ : β 0 ϕ 3 +ϕ 1 β 0 μ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFYoGydaWgaaWcbaGaaGimaaqabaGccq WFvpGzdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcqWFvpGzdaqadaqa aiaaigdacqGHsislcqWFYoGydaWgaaWcbaGaaGimaaqabaaakiaawI cacaGLPaaacqGHsislcqWF8oqBcqGH9aqpcaaIWaaaaa@4317@ , где коэффициент β 0 = 64Â f 0 3 / 3 m 0 g L 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFYoGydaWgaaWcbaGaaGimaaqabaGccq GH9aqpdaWcgaqaaiaaiAdacaaI0aGaamOWaiaadAgadaqhaaWcbaGa aGimaaqaaiaaiodaaaaakeaadaqadaqaaiaaiodacaWGTbWaaSbaaS qaaiaaicdaaeqaaOGaam4zaiaadYeadaahaaWcbeqaaiaaisdaaaaa kiaawIcacaGLPaaaaaaaaa@40F4@ . Все дальнейшие построения относятся к конечному состоянию провода.

При колебаниях точки оси получают перемещение из положения равновесия U=u(s)τ+w(s)n+v(s)b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWHvbGaeyypa0JaamyDaiaacIcacaWGZbGaai ykaGGabiab=r8a0jabgUcaRiaadEhacaGGOaGaam4CaiaacMcaruav P1wzZbItLDhis9wBH5gaiqWacaGFUbGaey4kaSIaamODaiaacIcaca WGZbGaaiykaiaa+jgaaaa@47BF@ , а поперечные сечения, считающиеся недеформируемыми, поворачивается на малый угол Ô=φ(s)τ+ φ 1 (s)n+ φ 2 (s)b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaieWacaWFudGaeyypa0dccaGae4NXdOMae4hkaG Iaam4CaiaacMcaiiqacqqFepaDcqGHRaWkcqGFgpGAdaWgaaWcbaGa aGymaaqabaGccaGGOaGaam4CaiaacMcaruavP1wzZbItLDhis9wBH5 gaiqWacaaFUbGaey4kaSIae4NXdO2aaSbaaSqaaiaaikdaaeqaaOGa aiikaiaadohacaGGPaGaaWNyaaaa@4C85@ . Число степеней свободы сечения (шесть) уменьшается до четырех, если использовать обычные для теории стержней связи, состоящие в отсутствии поперечных сдвигов и выразить углы поворота через производные перемещений по s: φ 1 = v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFgpGAdaWgaaWcbaGaaGymaaqabaGccq GH9aqpcqGHsislceWG2bGbauaaaaa@36B7@ , φ 2 = w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFgpGAdaWgaaWcbaGaaGOmaaqabaGccq GH9aqpceWG3bGbauaaaaa@35CC@ . В этой модели деформации растяжения, кручение и соответствующие им продольное натяжение и крутящий момент равны

ε= u k S w+ 1 2 v 2 + w 2 ,χ= φ k S v ;T=Bε,H=Dχ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF1oqzcqGH9aqpceWG1bGbauaacqGHsi slcaWGRbWaaSbaaSqaaiaadofaaeqaaOGaam4DaiabgUcaRmaalaaa baGaaGymaaqaaiaaikdaaaWaaeWaaeaaceWG2bGbauaadaahaaWcbe qaaiaaikdaaaGccqGHRaWkceWG3bGbauaadaahaaWcbeqaaiaaikda aaaakiaawIcacaGLPaaacaGGSaGaaGPaVlaaykW7caaMc8Uae83Xdm Maeyypa0Jaf8NXdOMbauaacqGHsislcaWGRbWaaSbaaSqaaiaadofa aeqaaOGabmODayaafaGaai4oaiaaykW7caaMc8UaaGPaVlaaykW7ca WGubGaeyypa0JaamOqaiab=v7aLjab=XcaSiaaykW7caaMc8Uaamis aiabg2da9iaadseacqWFhpWyaaa@62A5@ .

Здесь удержаны слагаемые второго порядка относительно поворотов, чтобы учесть влияние статического натяжения провода на его колебания, которые в дальнейшем считаются малыми.

Уравнения колебаний следуют из вариационного принципа Гамильтона–Остроградского: δ t 1 t 2 (KÏ )dt=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF0oazdaWdXbqaaiaacIcacaWGlbGaey OeI0Iaam4ZaaWcbaGaamiDamaaBaaameaacaaIXaaabeaaaSqaaiaa dshadaWgaaadbaGaaGOmaaqabaaaniabgUIiYdGccaGGPaGaamizai aadshacqGH9aqpcaaIWaaaaa@4101@ . Кинетическая энергия равна:

K= m 2 0 L u ˙ 2 + v ˙ 2 + w ˙ 2 + r 2 φ ˙ 2 2Δ φ ˙ w ˙ cos φ S + v ˙ sin φ S ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGlbGaeyypa0ZaaSaaaeaacaWGTbaabaGaaG OmaaaadaWdXbqaamaadmaabaGabmyDayaacaWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIabmODayaacaWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSIabm4DayaacaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOC amaaCaaaleqabaGaaGOmaaaaiiaakiqb=z8aQzaacaWaaWbaaSqabe aacaaIYaaaaOGaeyOeI0IaaGOmaiabfs5aejqb=z8aQzaacaWaaeWa aeaaceWG3bGbaiaaciGGJbGaai4BaiaacohacqWFgpGAdaWgaaWcba Gaam4uaaqabaGccqGHRaWkceWG2bGbaiaaciGGZbGaaiyAaiaac6ga cqWFgpGAdaWgaaWcbaGaam4uaaqabaaakiaawIcacaGLPaaaaiaawU facaGLDbaacaWGKbGaam4CaaWcbaGaaGimaaqaaiaadYeaa0Gaey4k Iipaaaa@5E13@ .

Потенциальная энергия складывается из энергии деформации Ï 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpdWaaSbaaSqaaiaaigdaaeqaaaaa@3345@  и приращения энергии Ï 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpdWaaSbaaSqaaiaaikdaaeqaaaaa@3346@  в поле тяжести при изменении положения центра массы сечения за счет вертикального смещения w вместе с полюсом и поворота на угол φ Σ =φv k S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFgpGAdaWgaaWcbaGaeu4Odmfabeaaki abg2da9iab=z8aQjabgkHiTiaadAhacaWGRbWaaSbaaSqaaiaadofa aeqaaaaa@3B20@ :

Ï 1 = 0 L Â 2 ε 2 + T S ε+ D 2 χ 2 + H S χ ds, Ï 2 =mg 0 L wΔ φ Σ cos( φ S + φ Σ ) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpdWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0 Zaa8qCaeaadaWadaqaamaalaaabaGaamOWaaqaaiaaikdaaaaccaGa e8xTdu2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamivamaaBaaale aacaWGtbaabeaakiab=v7aLjabgUcaRmaalaaabaGaamiraaqaaiaa ikdaaaGae83Xdm2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamisam aaBaaaleaacaWGtbaabeaakiab=D8aJbGaay5waiaaw2faaaWcbaGa aGimaaqaaiaadYeaa0Gaey4kIipakiaaykW7caWGKbGaam4Caiaayk W7caGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGpdWaaSba aSqaaiaaikdaaeqaaOGaeyypa0JaamyBaiaadEgadaWdXbqaamaadm aabaGaam4DaiabgkHiTiabfs5aejab=z8aQnaaBaaaleaacqqHJoWu aeqaaOGaci4yaiaac+gacaGGZbGaaiikaiab=z8aQnaaBaaaleaaca WGtbaabeaakiabgUcaRiab=z8aQnaaBaaaleaacqqHJoWuaeqaaOGa aiykaaGaay5waiaaw2faaaWcbaGaaGimaaqaaiaadYeaa0Gaey4kIi pakiaaykW7caWGKbGaam4Caaaa@7AD8@ .

Стандартная процедура приводит к системе уравнений, в которой сохранены только линейные по u,v,w,φ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG1bGaaiilaiaadAhacaGGSaGaam4DaiaacY caiiaacqWFgpGAcqWFSaalaaa@38AA@  слагаемые; величины O k S 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbWaaeWaaeaacaWGRbWaa0baaSqaaiaado faaeaacaaIYaaaaaGccaGLOaGaayzkaaaaaa@3622@  также считаются величинами второго порядка малости ввиду исходного предположения о пологости кривой провисания провода:

m u ¨ = T + T S ¯ m w ¨ mΔcos φ S φ ¨ = T S w + k S T+ k S T S mg ¯ m v ¨ mΔsin φ S φ ¨ = T S v k S H k S H S +mgΔcos φ S ¯ m r 2 φ ¨ mΔ w ¨ cos φ S + v ¨ sin φ S = H 2mgΔφsin φ S + H S +mgΔcos φ S ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqGabeqaaOmdbaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaamyBaiqadwhagaWaaiabg2da 9iqadsfagaqbaiabgUcaRmaamaaabaGabmivayaafaWaaSbaaSqaai aadofaaeqaaaaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGTbGabm4DayaadaGaeyOeI0Iaam yBaiabfs5aejGacogacaGGVbGaai4CaGGaaiab=z8aQnaaBaaaleaa caWGtbaabeaakiqb=z8aQzaadaGaeyypa0JaamivamaaBaaaleaaca WGtbaabeaakiqadEhagaGbaiabgUcaRiaadUgadaWgaaWcbaGaam4u aaqabaGccaWGubGaey4kaSYaaWaaaeaacaWGRbWaaSbaaSqaaiaado faaeqaaOGaamivamaaBaaaleaacaWGtbaabeaakiabgkHiTiaad2ga caWGNbaaaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaad2gaceWG2bGbamaacqGHsislcaWGTbGaeuiLdqKaci4Cai aacMgacaGGUbGae8NXdO2aaSbaaSqaaiaadofaaeqaaOGaf8NXdOMb amaacqGH9aqpcaWGubWaaSbaaSqaaiaadofaaeqaaOGabmODayaaga GaeyOeI0Iaam4AamaaBaaaleaacaWGtbaabeaakiqadIeagaqbamaa maaabaGaeyOeI0Iaam4AamaaBaaaleaacaWGtbaabeaakmaabmaaba GabmisayaafaWaaSbaaSqaaiaadofaaeqaaOGaey4kaSIaamyBaiaa dEgacqqHuoarciGGJbGaai4BaiaacohacqWFgpGAdaWgaaWcbaGaam 4uaaqabaaakiaawIcacaGLPaaaaaaabaGaamyBaiaadkhadaahaaWc beqaaiaaikdaaaGccuWFgpGAgaWaaiabgkHiTiaad2gacqqHuoarda qadaqaaiqadEhagaWaaiGacogacaGGVbGaai4Caiab=z8aQnaaBaaa leaacaWGtbaabeaakiabgUcaRiqadAhagaWaaiGacohacaGGPbGaai OBaiab=z8aQnaaBaaaleaacaWGtbaabeaaaOGaayjkaiaawMcaaiab g2da9iqadIeagaqbaiabgkHiTiaaikdacaWGTbGaam4zaiabfs5aej ab=z8aQjGacohacaGGPbGaaiOBaiab=z8aQnaaBaaaleaacaWGtbaa beaakiabgUcaRmaamaaabaGabmisayaafaWaaSbaaSqaaiaadofaae qaaOGaey4kaSIaamyBaiaadEgacqqHuoarciGGJbGaai4Baiaacoha cqWFgpGAdaWgaaWcbaGaam4uaaqabaaaaOGaaiOlaaaaaa@41CB@ (2.1)

На краях предполагается отсутствие перемещений и поворота: u=v=w=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG1bGaeyypa0JaamODaiabg2da9iaadEhacq GH9aqpcaaIWaaaaa@37C7@ , φ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFgpGAcqGH9aqpcaaIWaaaaa@348C@ . Подчеркнутые слагаемые равны нулю в силу условий статики и дают уравнения для определения формы провисания и угла поворота сечения в положении равновесия w S (s),  φ S (s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG3bWaaSbaaSqaaiaadofaaeqaaOGaaiikai aadohacaGGPaGaaiilaiaabccaiiaacqWFgpGAdaWgaaWcbaGaam4u aaqabaGccaGGOaGaam4CaiaacMcaaaa@3BD9@ . Пренебрегая вкладом перемещения v S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG2bWaaSbaaSqaaiaadofaaeqaaaaa@3309@ , запишем:

w S = mg L 2 / T S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaceWG3bGbayaadaWgaaWcbaGaam4uaaqabaGccq GH9aqpdaWcgaqaaiaad2gacaWGNbGaamitamaaCaaaleqabaGaaGOm aaaaaOqaaiaadsfadaWgaaWcbaGaam4uaaqabaaaaaaa@39BC@ , φ S +κcos φ S =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacuWFgpGAgaGbamaaBaaaleaaruavP1wzZb ItLDhis9wBH5gaiqGacaGFtbaabeaakiabgUcaRiab=P7aRjGacoga caGGVbGaai4Caiab=z8aQnaaBaaaleaacaWGtbaabeaakiabg2da9i aaicdaaaa@4357@ .

Здесь дифференцирование ведется по безразмерной координате x=s/L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bGaeyypa0ZaaSGbaeaacaWGZbaabaGaam itaaaaaaa@34EC@ . Параметр κ= μ m 0 gΔ L 2 /D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF6oWAcqGH9aqpdaWcgaqaaiab=X7aTj aad2gadaWgaaWcbaGaaGimaaqabaGccaWGNbGaeuiLdqKaamitamaa CaaaleqabaGaaGOmaaaaaOqaaiaadseaaaaaaa@3C4F@  обобщенно характеризует упруго-инерционные характеристики провода и гололедной оболочки.

Решение первого уравнения дает известное соотношение технической теории гибкой нити малого провисания:

w S =f ψ S (x),   f= mg L 2 / 8 T S ,    ψ S (x)=4x 1x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG3bWaaSbaaSqaaiaadofaaeqaaOGaeyypa0 JaamOzaGGaaiab=H8a5naaBaaaleaacaWGtbaabeaakiaacIcacaWG 4bGaaiykaiaacYcacaqGGaGaaeiiaiaabccacaWGMbGaeyypa0ZaaS GbaeaacaWGTbGaam4zaiaadYeadaahaaWcbeqaaiaaikdaaaaakeaa caaI4aGaamivamaaBaaaleaacaWGtbaabeaaaaGccaGGSaGaaeiiai aabccacaqGGaGae8hYdK3aaSbaaSqaaiaadofaaeqaaOGaaiikaiaa dIhacaGGPaGaeyypa0JaaGinaiaadIhadaqadaqaaiaaigdacqGHsi slcaWG4baacaGLOaGaayzkaaaaaa@53DC@ .

Второе уравнение имеет первый интеграл: φ S = 2κ sin φ m sinφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacuWFgpGAgaqbamaaBaaaleaacaWGtbaabe aakiabg2da9maakaaabaGaaGOmaiab=P7aRnaabmaabaGaci4Caiaa cMgacaGGUbGae8NXdO2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Iaci 4CaiaacMgacaGGUbGae8NXdOgacaGLOaGaayzkaaaaleqaaaaa@442E@ , где постоянная интегрирования φ m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFgpGAdaWgaaWcbaGaamyBaaqabaaaaa@33EA@  – максимальный угол поворота сечения (в центре пролета). Второй интеграл:

  x= 0 φ dz 2κ sin φ m sinz =F φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bGaeyypa0Zaa8qCaeaadaWcaaqaaiaads gacaWG6baabaWaaOaaaeaacaaIYaaccaGae8NUdS2aaeWaaeaaciGG ZbGaaiyAaiaac6gacqWFgpGAdaWgaaWcbaGaamyBaaqabaGccqGHsi slciGGZbGaaiyAaiaac6gacaWG6baacaGLOaGaayzkaaaaleqaaaaa aeaacaaIWaaabaGae8NXdOganiabgUIiYdGccqGH9aqpcaWGgbWaae WaaeaacqWFgpGAaiaawIcacaGLPaaaaaa@4D84@ .

Величина φ m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFgpGAdaWgaaWcbaGaamyBaaqabaaaaa@33EA@  определяется из условия, что угол поворота максимален при x=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bGaeyypa0ZaaSGbaeaacaaIXaaabaGaaG Omaaaaaaa@349A@ ; это приводит к уравнению F φ m =1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGgbWaaeWaaeaaiiaacqWFgpGAdaWgaaWcba GaamyBaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWcgaqaaiaaigda aeaacaaIYaaaaaaa@38DB@ . Непосредственный расчет указывает на то, что достаточно точной является следующая аппроксимация решения:

  φ S x,κ = π 2 1 e 0.075κ ψ S (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFgpGAdaWgaaWcbaGaam4uaaqabaGcda qadaqaaiaadIhacaGGSaGae8NUdSgacaGLOaGaayzkaaGaeyypa0Za aSaaaeaacqWFapaCaeaacaaIYaaaamaabmaabaGaaGymaiabgkHiTi aadwgadaahaaWcbeqaaiabgkHiTiaaicdacaGGUaGaaGimaiaaiEda caaI1aGae8NUdSgaaaGccaGLOaGaayzkaaGae8hYdK3aaSbaaSqaai aadofaaeqaaOGaaiikaiaadIhacaGGPaaaaa@4C06@ . (2.2)

Перейдем в уравнениях (2.1) к перемещениям:

  u ¨ c u 2 u = k S c u 2 w w ¨ c w 2 w + k S 2 c u 2 w= k S c u 2 u +Δ φ ¨ cos φ S v ¨ c v 2 v = k S r 2 c φ 2 φ +Δ φ ¨ sin φ S φ ¨ ñ φ 2 φ +2mgΔφsin φ S = k S c φ 2 v +Δ r 2 w ¨ cos φ S + v ¨ sin φ S . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqadwhagaWaaiabgkHiTiaa dogadaqhaaWcbaGaamyDaaqaaiaaikdaaaGcceWG1bGbayaacqGH9a qpcqGHsislcaWGRbWaaSbaaSqaaiaadofaaeqaaOGaam4yamaaDaaa leaacaWG1baabaGaaGOmaaaakiqadEhagaqbaaqaaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlqadEhagaWaaiabgkHiTiaadogadaqhaaWc baGaam4DaaqaaiaaikdaaaGcceWG3bGbayaacqGHRaWkcaWGRbWaa0 baaSqaaiaadofaaeaacaaIYaaaaOGaam4yamaaDaaaleaacaWG1baa baGaaGOmaaaakiaadEhacqGH9aqpcaWGRbWaaSbaaSqaaiaadofaae qaaOGaam4yamaaDaaaleaacaWG1baabaGaaGOmaaaakiqadwhagaqb aiabgUcaRiabfs5aeHGaaiqb=z8aQzaadaGaci4yaiaac+gacaGGZb Gae8NXdO2aaSbaaSqaaiaadofaaeqaaaGcbaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlqadAhagaWaaiabgkHiTiaadogadaqhaaWcbaGaamODaaqa aiaaikdaaaGcceWG2bGbayaacqGH9aqpcqGHsislcaWGRbWaaSbaaS qaaiaadofaaeqaaOGaamOCamaaCaaaleqabaGaaGOmaaaakiaadoga daqhaaWcbaGaeqOXdOgabaGaaGOmaaaakiqb=z8aQzaagaGaey4kaS IaeuiLdqKaf8NXdOMbamaaciGGZbGaaiyAaiaac6gacqWFgpGAdaWg aaWcbaGaam4uaaqabaaakeaacuWFgpGAgaWaaiabgkHiTiaadgpada qhaaWcbaGae8NXdOgabaGaaGOmaaaakiqb=z8aQzaagaGaey4kaSIa aGOmaiaad2gacaWGNbGaeuiLdqKae8NXdOMaci4CaiaacMgacaGGUb Gae8NXdO2aaSbaaSqaaiaadofaaeqaaOGaeyypa0JaeyOeI0Iaam4A amaaBaaaleaacaWGtbaabeaakiaadogadaqhaaWcbaGae8NXdOgaba GaaGOmaaaakiqadAhagaGbaiabgUcaRiabfs5aejaadkhadaahaaWc beqaaiabgkHiTiaaikdaaaGcdaqadaqaaiqadEhagaWaaiGacogaca GGVbGaai4Caiab=z8aQnaaBaaaleaacaWGtbaabeaakiabgUcaRiqa dAhagaWaaiGacohacaGGPbGaaiOBaiab=z8aQnaaBaaaleaacaWGtb aabeaaaOGaayjkaiaawMcaaiaac6caaaaa@366B@ (2.3)

Здесь величины

ñ u = B/m = B/ μ m 0 = c u 0 / μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXdWaaSbaaSqaaiaadwhaaeqaaOGaeyypa0 ZaaOaaaeaadaWcgaqaaiaadkeaaeaacaWGTbaaaaWcbeaakiabg2da 9maakaaabaWaaSGbaeaacaWGcbaabaaccaGae8hVd0MaamyBamaaBa aaleaacaaIWaaabeaaaaaabeaakiabg2da9maalyaabaGaam4yamaa DaaaleaacaWG1baabaGaaGimaaaaaOqaamaakaaabaGae8hVd0gale qaaaaaaaa@41F5@

c v = c w 2 + k S 2 r 2 c φ 2 = c w 1+ k S0 2 r 0 2 c φ 0 / c w 0 2 ϕ 3 /μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGJbWaaSbaaSqaaiaadAhaaeqaaOGaeyypa0 ZaaOaaaeaacaWGJbWaa0baaSqaaiaadEhaaeaacaaIYaaaaOGaey4k aSIaam4AamaaDaaaleaacaWGtbaabaGaaGOmaaaakiaadkhadaahaa WcbeqaaiaaikdaaaGccaWGJbWaa0baaSqaaGGaaiab=z8aQbqaaiaa ikdaaaaabeaakiabg2da9iaadogadaWgaaWcbaGaam4DaaqabaGcda GcaaqaaiaaigdacqGHRaWkcaWGRbWaa0baaSqaaiaadofacaaIWaaa baGaaGOmaaaakiaadkhadaqhaaWcbaGaaGimaaqaaiaaikdaaaGcda qadaqaamaalyaabaGaam4yamaaDaaaleaacqWFgpGAaeaacaaIWaaa aaGcbaGaam4yamaaDaaaleaacaWG3baabaGaaGimaaaaaaaakiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaGcdaWcgaqaaiab=v9aMnaa CaaaleqabaGaaG4maaaaaOqaaiab=X7aTbaaaSqabaaaaa@589B@

c w = T S /m = g/ k S = g/ ϕ k S0 = ñ w 0 / ϕ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGJbWaaSbaaSqaaiaadEhaaeqaaOGaeyypa0 ZaaOaaaeaadaWcgaqaaiaadsfadaWgaaWcbaGaam4uaaqabaaakeaa caWGTbaaaaWcbeaakiabg2da9maakaaabaWaaSGbaeaacaWGNbaaba Gaam4AamaaBaaaleaacaWGtbaabeaaaaaabeaakiabg2da9maakaaa baWaaSGbaeaacaWGNbaabaWaaeWaaeaaiiaacqWFvpGzcaWGRbWaaS baaSqaaiaadofacaaIWaaabeaaaOGaayjkaiaawMcaaaaaaSqabaGc cqGH9aqpdaWcgaqaaiaadgpadaqhaaWcbaGaam4Daaqaaiaaicdaaa aakeaadaGcaaqaaiab=v9aMbWcbeaaaaaaaa@49EC@

ñ φ = D/ m r 2 = D/ m 0 r 0 2 μ ϑ 2 = ñ φ 0 / μ ϑ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXdWaaSbaaSqaaGGaaiab=z8aQbqabaGccq GH9aqpdaGcaaqaamaalyaabaGaamiraaqaamaabmaabaGaamyBaiaa dkhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaaaaleqaaO Gaeyypa0ZaaOaaaeaadaWcgaqaaiaadseaaeaadaqadaqaaiaad2ga daWgaaWcbaGaaGimaaqabaGccaWGYbWaa0baaSqaaiaaicdaaeaaca aIYaaaaOGae8hVd0Mae8x0dO0aaWbaaSqabeaacaaIYaaaaaGccaGL OaGaayzkaaaaaaWcbeaakiabg2da9maalyaabaGaamy8amaaDaaale aacqWFgpGAaeaacaaIWaaaaaGcbaWaaOaaaeaacqWF8oqBcqWFrpGs daahaaWcbeqaaiaaikdaaaaabeaaaaaaaa@50CF@

– фазовые скорости парциальных продольных, поперечных (в вертикальном и горизонтальном направлениях) и крутильных волн в конечном и исходном состояниях (последние отмечены верхним индексом “0”).

Левые части уравнений (2.3) представляют собой операторы, описывающие парциальные продольные, крутильные и поперечные волны в проводе. При отсутствии или равномерном распределении массы гололеда по сечению провода центр массы сечения лежит на оси провода Δ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiabfs5aejabg2da9iaaicdaaiaawI cacaGLPaaaaaa@35B9@ , и система распадается на две независимые подсистемы, описывающие продольно-поперечные волны в вертикальной плоскости и поперечно-крутильные – в горизонтальном направлении.

Между перечисленными скоростями существуют соотношения, играющие важную роль в формировании собственных частот провода. Скорость продольных упругих волн c u 0 5000м/с MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGJbWaa0baaSqaaiaadwhaaeaacaaIWaaaaO GaeyisISRaaGynaiaaicdacaaIWaGaaGimaiaaykW7daWcgaqaaerb uLwBLnhiov2DGi1BTfMBaGabaiaa=XdbaeaacaWFbraaaaaa@412E@  м/с. Характерная скорость поперечных волн при отсутствии гололеда c w 0 100м/с MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGJbWaa0baaSqaaiaadEhaaeaacaaIWaaaaO GaeyisISRaaGymaiaaicdacaaIWaGaaGPaVlaaykW7daWcgaqaaerb uLwBLnhiov2DGi1BTfMBaGabaiaa=XdbaeaacaWFbraaaaaa@41FD@  м/с. Сопоставление аппроксимации крутильной жесткости, предложенной в работах [10, 11], с ее традиционной формой D= G eq π d 4 /32=2.7 10 8 d 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebGaeyypa0Jaam4ramaaBaaaleaacaWGLb GaamyCaaqabaaccaGccqWFapaCcaWGKbWaaWbaaSqabeaacaaI0aaa aOGaai4laiaaiodacaaIYaGaeyypa0JaaGOmaiaac6cacaaI3aGaey yXICTaaGymaiaaicdadaahaaWcbeqaaiaaiIdaaaGccaWGKbWaaWba aSqabeaacaaI0aaaaaaa@4548@  приводит к эквивалентному модулю сдвига провода при кручении: G eq =2.75ГПа MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGhbWaaSbaaSqaaiaadwgacaWGXbaabeaaki abg2da9iaaikdacaGGUaGaaG4naiaaiwdacaaMc8UaaGPaVhrbuLwB Lnhiov2DGi1BTfMBaGabaiaa=nbbcaWFFqGaa8hmeaaa@4272@  ГПа, что примерно на порядок меньше модуля сдвига алюминиевого сплава провода. Полагая: G eq 3ГПа MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGhbWaaSbaaSqaaiaadwgacaWGXbaabeaaki abgIKi7kaaiodacaaMc8UaaGPaVhrbuLwBLnhiov2DGi1BTfMBaGab aiaa=nbbcaWFFqGaa8hmeaaa@40EC@  ГПа, ρ eq 3000 кг/м MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFbpGCdaWgaaWcbaGaamyzaiaadghaae qaaOGaeyisISRaaG4maiaaicdacaaIWaGaaGimaiaaykW7caaMc8+a aSGbaeaaruavP1wzZbItLDhis9wBH5gaiqaacaGF6qGaa43meaqaai aa+Xdbaaaaaa@446D@  кг/м, оценим скорость крутильной волны: ñ φ 0 = G eq / ρ eq 1000м/с MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXdWaa0baaSqaaGGaaiab=z8aQbqaaiaaic daaaGccqGH9aqpdaGcaaqaamaalyaabaGaam4ramaaBaaaleaacaWG LbGaamyCaaqabaaakeaacqWFbpGCdaWgaaWcbaGaamyzaiaadghaae qaaaaaaeqaaOGaeyisISRaaGymaiaaicdacaaIWaGaaGimaiaaykW7 caaMc8+aaSGbaeaaruavP1wzZbItLDhis9wBH5gaiqaacaGF8qaaba Gaa4xqeaaaaaa@4BE8@  м/с.

При обледенении фазовые скорости уменьшаются, однако скорость продольной волны остается существенно больше скорости поперечной, так как ϕ,μ=O(1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFvpGzcaGGSaGae8hVd0Maeyypa0Jaam 4taiaacIcacaaIXaGaaiykaaaa@3926@ , а деформация статического растяжения ε S = T S /B 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF1oqzdaWgaaWcbaGaam4uaaqabaGccq GH9aqpdaWcgaqaaiaadsfadaWgaaWcbaGaam4uaaqabaaakeaacaWG cbaaaiabgIKi7kaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZa aaaaaa@3C8B@ , откуда следует, что α= ñ u / c w = ϕ/ μ ε S >>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqycqGH9aqpdaWcgaqaaiaadgpadaWgaa WcbaGaamyDaaqabaaakeaacaWGJbWaaSbaaSqaaiaadEhaaeqaaaaa kiabg2da9maakaaabaWaaSGbaeaaiiaacqWFvpGzaeaadaqadaqaai ab=X7aTjab=v7aLnaaBaaaleaacaWGtbaabeaaaOGaayjkaiaawMca aaaaaSqabaGccqGH+aGpcqGH+aGpcaaIXaaaaa@4448@ . Отношение γ= ñ φ / c w = ñ φ 0 ϕ / c w 0 ϑ μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFZoWzcqGH9aqpdaWcgaqaaiaadgpada WgaaWcbaGae8NXdOgabeaaaOqaaiaadogadaWgaaWcbaGaam4Daaqa baaaaOGaeyypa0ZaaSGbaeaadaqadaqaaiaadgpadaqhaaWcbaGae8 NXdOgabaGaaGimaaaakmaakaaabaGae8x1dygaleqaaaGccaGLOaGa ayzkaaaabaWaaeWaaeaacaWGJbWaa0baaSqaaiaadEhaaeaacaaIWa aaaOGae8x0dO0aaOaaaeaacqWF8oqBaSqabaaakiaawIcacaGLPaaa aaaaaa@49D3@  не столь большое, если учесть, что ñ φ 0 / c w 0 <10 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcgaqaaiaadgpadaqhaaWcbaaccaGae8NXdO gabaGaaGimaaaaaOqaaiaadogadaqhaaWcbaGaam4Daaqaaiaaicda aaaaaOGaeyipaWJaaGymaiaaicdaaaa@3A97@ , а параметры ϕ,μ,ϑ=Î 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFvpGzcaGGSaGae8hVd0Maaiilaiab=f 9akjabg2da9iaad6madaqadaqaaiaaigdaaiaawIcacaGLPaaaaaa@3C28@ . Тем не менее, для реальных проводов можно считать, что γ 2 >>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFZoWzdaahaaWcbeqaaiaaikdaaaGccq GH+aGpcqGH+aGpcaaIXaaaaa@3674@ . Так как кривизна провисающего провода k S < 10 3 ì 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGRbWaaSbaaSqaaiaadofaaeqaaOGaeyipaW JaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodaaaGccaaMc8Ua aei7amaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3C31@ , а радиус инерции сечения r< 10 2 ì MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGYbGaeyipaWJaaGymaiaaicdadaahaaWcbe qaaiabgkHiTiaaikdaaaGccaqGSdaaaa@37C9@ , то c w 2 >> k S 2 r 2 c φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGJbWaa0baaSqaaiaadEhaaeaacaaIYaaaaO GaeyOpa4JaeyOpa4Jaam4AamaaDaaaleaacaWGtbaabaGaaGOmaaaa kiaadkhadaahaaWcbeqaaiaaikdaaaGccaWGJbWaa0baaSqaaiabeA 8aQbqaaiaaikdaaaaaaa@3E24@  и β= c v / c w 1+ k S 2 r 2 γ 2 /2 =O 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFYoGycqGH9aqpdaWcgaqaaiaadogada WgaaWcbaGaamODaaqabaaakeaacaWGJbWaaSbaaSqaaiaadEhaaeqa aaaakiabgIKi7kaaigdacqGHRaWkdaWcgaqaaiaadUgadaqhaaWcba Gaam4uaaqaaiaaikdaaaGccaWGYbWaaWbaaSqabeaacaaIYaaaaOGa e83SdC2aaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaacqGH9aqpca WGpbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaa@4777@ . Таким образом, среди парциальных колебаний наиболее высокие частоты должны быть у продольных, а наименьшие – у поперечных, тогда как частоты крутильных занимают промежуточное положение.

Исключая время подстановкой u,v,w,φ u,v,w,φ e iωt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiaadwhacaGGSaGaamODaiaacYcaca WG3bGaaiilaGGaaiab=z8aQbGaayjkaiaawMcaaiabgkziUoaabmaa baGaamyDaiaacYcacaWG2bGaaiilaiaadEhacaGGSaGae8NXdOgaca GLOaGaayzkaaGaamyzamaaCaaaleqabaGaamyAaiab=L8a3jaadsha aaaaaa@484B@ , перейдем к безразмерным параметрам: ω ˜ = ωL/ c w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacuWFjpWDgaacaiabg2da9maalyaabaGae8 xYdCNaamitaaqaaiaadogadaWgaaWcbaGaam4Daaqabaaaaaaa@38B0@ , x=s/L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bGaeyypa0ZaaSGbaeaacaWGZbaabaGaam itaaaaaaa@34EC@ , u ˜ , v ˜ , w ˜ = u,v,w /d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiqadwhagaacaiaacYcaceWG2bGbaG aacaGGSaGabm4DayaaiaaacaGLOaGaayzkaaGaeyypa0ZaaSGbaeaa daqadaqaaiaadwhacaGGSaGaamODaiaacYcacaWG3baacaGLOaGaay zkaaaabaGaamizaaaaaaa@3EF0@ , и вместо (2.3) придем к однородной краевой задаче типа Штурма–Лиувилля с нулевыми граничными условиями (в дальнейшем значок тильды опускается):

  ζ ω 2 u+ α 2 u = α 2 η w ω 2 α 2 η 2 w+ w = α 2 η u + ω 2 δφcos φ S ω 2 v+ β 2 v =τ γ 2 ρ 2 φ + ω 2 δφsin φ S ω 2 2κ γ 2 sin φ S φ+ γ 2 φ =τ γ 2 v + ω 2 δ ρ 2 vsin φ S +wcos φ S . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVJGaaiab=z7a6jab=L8a3naaCaaaleqabaGaaGOmaaaa kiaadwhacqGHRaWkcqWFXoqydaahaaWcbeqaaiaaikdaaaGcceWG1b GbayaacqGH9aqpcqWFXoqydaahaaWcbeqaaiaaikdaaaGccqWF3oaA ceWG3bGbauaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVpaabmaabaGae8xYdC3aaWbaaSqabeaaca aIYaaaaOGaeyOeI0Iae8xSde2aaWbaaSqabeaacaaIYaaaaOGae83T dG2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaam4DaiabgU caRiqadEhagaGbaiabg2da9iabgkHiTiab=f7aHnaaCaaaleqabaGa aGOmaaaakiab=D7aOjqadwhagaqbaiabgUcaRiab=L8a3naaCaaale qabaGaaGOmaaaakiab=r7aKjab=z8aQjGacogacaGGVbGaai4Caiab =z8aQnaaBaaaleaacaWGtbaabeaaaOqaaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uae8xYdC3a aWbaaSqabeaacaaIYaaaaOGaamODaiabgUcaRiab=j7aInaaCaaale qabaGaaGOmaaaakiqadAhagaGbaiabg2da9iab=r8a0jab=n7aNnaa CaaaleqabaGaaGOmaaaakiab=f8aYnaaCaaaleqabaGaaGOmaaaaki qb=z8aQzaagaGaey4kaSIae8xYdC3aaWbaaSqabeaacaaIYaaaaOGa e8hTdqMae8NXdOMaci4CaiaacMgacaGGUbGae8NXdO2aaSbaaSqaai aadofaaeqaaaGcbaWaaeWaaeaacqWFjpWDdaahaaWcbeqaaiaaikda aaGccqGHsislcaaIYaGae8NUdSMae83SdC2aaWbaaSqabeaacaaIYa aaaOGaci4CaiaacMgacaGGUbGae8NXdO2aaSbaaSqaaiaadofaaeqa aaGccaGLOaGaayzkaaGae8NXdOMaey4kaSIae83SdC2aaWbaaSqabe aacaaIYaaaaOGaf8NXdOMbayaacqGH9aqpcqWFepaDcqWFZoWzdaah aaWcbeqaaiaaikdaaaGcceWG2bGbayaacqGHRaWkcqWFjpWDdaahaa WcbeqaaiaaikdaaaGccqWF0oazcqWFbpGCdaahaaWcbeqaaiabgkHi TiaaikdaaaGcdaqadaqaaiaadAhaciGGZbGaaiyAaiaac6gacqWFgp GAdaWgaaWcbaGaam4uaaqabaGccqGHRaWkcaWG3bGaci4yaiaac+ga caGGZbGae8NXdO2aaSbaaSqaaiaadofaaeqaaaGccaGLOaGaayzkaa GaaiOlaaaaaa@3599@ (2.4)

В первое уравнение системы (2.4) введен множитель ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF2oGEaaa@32CC@ , принимающий значения 1 или 0. При ζ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF2oGEcqWF9aqpcqWFWaamaaa@34B0@  не учитываются продольные силы инерции и сопутствующие им волны, малые в наиболее интересном частотном диапазоне. При этом эффект упругого растяжения провода сохраняется.

В уравнениях (2.4) в дополнение к ранее установленным соотношениям фазовых скоростей α,β,γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFXoqycaGGSaGaaGPaVlab=j7aIjaacY cacaaMc8Uae83SdCgaaa@3A62@  введены безразмерные величины:

τ=d k S =d k S0 ϕ,η=L k S =L k S0 ϕ,  δ=Δ/d ,  ρ=r/d =ϑ/ 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFepaDcqGH9aqpcaWGKbGaam4AamaaBa aaleaacaWGtbaabeaakiabg2da9iaadsgacaWGRbWaaSbaaSqaaiaa dofacaaIWaaabeaakiab=v9aMjaacYcacaaMc8UaaGPaVlaaykW7ca aMc8Uae83TdGMaeyypa0JaamitaiaadUgadaWgaaWcbaGaam4uaaqa baGccqGH9aqpcaWGmbGaam4AamaaBaaaleaacaWGtbGaaGimaaqaba GccqWFvpGzcaGGSaGaaeiiaiaabccacqWF0oazcqGH9aqpdaWcgaqa aiabfs5aebqaaiaadsgaaaGaaiilaiaabccacaqGGaGae8xWdiNaey ypa0ZaaSGbaeaacaWGYbaabaGaamizaaaacqGH9aqpdaWcgaqaaiab =f9akbqaamaakaaabaGaaGioaaWcbeaaaaaaaa@611F@ .

Оценим практически возможные диапазоны изменения безразмерных коэффициентов. Увеличение массы можно оценить исходя из того, что соотношение масс μ=m/ m 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF8oqBcqGH9aqpdaWcgaqaaiaad2gaae aacaWGTbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@36AB@  не может превышать соотношение предельно допустимого и эксплуатационного натяжения провода, которое примерно равно 5 [3], поэтому примем, что 1<μ<5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaIXaGaeyipaWdccaGae8hVd0MaeyipaWJaaG ynaaaa@3647@ . Из (2.2) следует, что верхняя граница актуального диапазона изменения коэффициента κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF6oWAaaa@32C1@  составляет: κ max 50 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF6oWAdaWgaaWcbaGaciyBaiaacggaca GG4baabeaakiabgIKi7kaaiwdacaaIWaaaaa@38F5@ . Для сечений гололеда, симметричных относительно линии центров ОС, имеет место неравенство Δr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHuoarcqGHKjYOcaWGYbaaaa@351C@ . Эксплуатационные характеристики проводов [9] позволяют оценить остальные параметры: τ<< 10 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFepaDcqGH8aapcqGH8aapcaaIXaGaaG imamaaCaaaleqabaGaeyOeI0IaaGinaaaaaaa@3829@ , η0.20.3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF3oaAcqGHijYUcaaIWaGaaiOlaiaaik dacqGHsislcaaIWaGaaiOlaiaaiodaaaa@39AA@ . Наименее определенна величина ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFbpGCaaa@32CF@ : можно считать ρ=O 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFbpGCcqGH9aqpcaWGpbWaaeWaaeaaca aIXaaacaGLOaGaayzkaaaaaa@36ED@ , исходя из точной нижней границы ρ min =1/ 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFbpGCdaWgaaWcbaGaciyBaiaacMgaca GGUbaabeaakiabg2da9maalyaabaGaaGymaaqaamaakaaabaGaaGio aaWcbeaaaaaaaa@388B@ .

Учитывая, что α 2 >>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFXoqydaahaaWcbeqaaiaaikdaaaGccq GH+aGpcqGH+aGpcaaIXaaaaa@366C@ , для характерных пролетов длиной L300ì MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGmbGaeyisISRaaG4maiaaicdacaaIWaGaaG PaVlaaykW7caqGSdaaaa@3A42@  и c w 100ì/ñ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGJbWaaSbaaSqaaiaadEhaaeqaaOGaeyisIS RaaGymaiaaicdacaaIWaGaaGPaVlaaykW7caqGSdGaae4laiaabgpa aaa@3DAF@  в диапазоне частот до 5 Гц безразмерная частота лежит в интервале 0<ω<100 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaIWaGaeyipaWdccaGae8xYdCNaeyipaWJaaG ymaiaaicdacaaIWaaaaa@37CD@ . Приводимые в дальнейшем числовые оценки относятся к распространенному на практике пролету ВЛЭ с проводом АС 150/24 длиной 300 м при стреле провисания в исходном состоянии 10 м. Механические характеристики провода: погонная масса m 0 =0.6 êã/ì MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0 JaaGimaiaac6cacaaI2aWaaSGbaeaacaaMc8UaaeO6aiaabooaaeaa caqGSdaaaaaa@3C01@ , диаметр d=17 ìì MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGKbGaeyypa0JaaGymaiaaiEdacaqGGaGaae i7aiaabYoaaaa@37F6@ , жесткость на растяжение В = 15 МН, жесткость на кручение D = 23 МН·м2. Для него (при выбранном масштабе частоты) значению ω=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDcqGH9aqpcaaIXaaaaa@349D@  соответствует частота, равная примерно 0.05Гц. Для параметров, характеризующих гололедную оболочку, условно принято: μ=2, ϑ=2, δ=0.1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF8oqBcqGH9aqpcaaIYaGaaiilaiaabc cacqWFrpGscqGH9aqpcaaIYaGaaiilaiaabccacqWF0oazcqGH9aqp caaIWaGaaiOlaiaaigdaaaa@3F5F@ .

Система уравнений (2.4) имеет переменные коэффициенты, связанные с изменением угла статического закручивания φ S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHgpGAdaWgaaWcbaGaam4uaaqabaaaaa@33CB@  провода по длине пролета. Учитывая неизбежную неопределенность распределения гололедных отложений, заменим тригонометрические функции этого угла их средними по длине значениями:

S(κ)= 0 1 sin φ S (x, κ)dx,C(κ)= 0 1 cos φ S (x, κ)dx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGtbGaaiikaGGaaiab=P7aRjaacMcacqGH9a qpdaWdXbqaaiGacohacaGGPbGaaiOBaiab=z8aQnaaBaaaleaacaWG tbaabeaakiaacIcacaWG4bGaaiilaaWcbaGaaGimaaqaaiaaigdaa0 Gaey4kIipakiab=bcaGiab=P7aRjab=LcaPiaadsgacaWG4bGaaiil aiaaykW7caaMc8Uaam4qaiaacIcacqWF6oWAcaGGPaGaeyypa0Zaa8 qCaeaaciGGJbGaai4BaiaacohacqWFgpGAdaWgaaWcbaGaam4uaaqa baGccaGGOaGaamiEaiaacYcaaSqaaiaaicdaaeaacaaIXaaaniabgU IiYdGccqWFGaaicqWF6oWAcqWFPaqkcaWGKbGaamiEaaaa@60A9@ .

Полагая u,w,v,φ = U,W,V,Φ e iλx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiaadwhacaGGSaGaam4DaiaacYcaca WG2bGaaiilaGGaaiab=z8aQbGaayjkaiaawMcaaiabg2da9maabmaa baGaamyvaiaacYcacaWGxbGaaiilaiaadAfacaGGSaGaeuOPdyeaca GLOaGaayzkaaGaamyzamaaCaaaleqabaGaamyAaiab=T7aSjaadIha aaaaaa@46B1@  и подставляя эти выражения в уравнения (2.4), придем к системе однородных уравнений относительно амплитуд U,V,W,Φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGvbGaaiilaiaadAfacaGGSaGaam4vaiaacY cacqqHMoGraaa@3725@  с постоянными коэффициентами:

  M λ,ω U W V Φ = q 11 q 12 0 0 q 21 q 22 0 q 24 0 0 q 33 q 34 0 q 42 q 43 q 44 U W V Φ = D 1 d 1 d 2 D 2 U W V Φ =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFnbWaae WaaeaaiiaacqGF7oaBcaGGSaGae4xYdChacaGLOaGaayzkaaWaaeWa aeaafaqabeabbaaaaeaacaWGvbaabaGaam4vaaqaaiaadAfaaeaacq qHMoGraaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaafaqabeabeaaa aaqaaiaadghadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamyCam aaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqa aiaadghadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaamyCamaaBa aaleaacaaIYaGaaGOmaaqabaaakeaacaaIWaaabaGaamyCamaaBaaa leaacaaIYaGaaGinaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaadg hadaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaamyCamaaBaaaleaa caaIZaGaaGinaaqabaaakeaacaaIWaaabaGaamyCamaaBaaaleaaca aI0aGaaGOmaaqabaaakeaacaWGXbWaaSbaaSqaaiaaisdacaaIZaaa beaaaOqaaiaadghadaWgaaWcbaGaaGinaiaaisdaaeqaaaaaaOGaay jkaiaawMcaamaabmaabaqbaeqabqqaaaaabaGaamyvaaqaaiaadEfa aeaacaWGwbaabaGaeuOPdyeaaaGaayjkaiaawMcaaiabg2da9maabm aabaqbaeqabiGaaaqaaiaadseadaWgaaWcbaGaaGymaaqabaaakeaa caWGKbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizamaaBaaaleaaca aIYaaabeaaaOqaaiaadseadaWgaaWcbaGaaGOmaaqabaaaaaGccaGL OaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWGvbaabaGaam4vaa qaaiaadAfaaeaacqqHMoGraaaacaGLOaGaayzkaaGaeyypa0JaaGim aaaa@7B15@ , (2.5)

где обозначено:

q 11 =ζ ω 2 α 2 λ 2 , q 12 = q 21 =iλ α 2 η, q 22 = ω 2 α 2 η 2 λ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXbWaaSbaaSqaaiaaigdacaaIXaaabeaaki abg2da9GGaaiab=z7a6jab=L8a3naaCaaaleqabaGaaGOmaaaakiab gkHiTiab=f7aHnaaCaaaleqabaGaaGOmaaaakiab=T7aSnaaCaaale qabaGaaGOmaaaakiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaamyC amaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcqGHsislcaWGXb WaaSbaaSqaaiaaikdacaaIXaaabeaakiabg2da9iabgkHiTiaadMga cqWF7oaBcqWFXoqydaahaaWcbeqaaiaaikdaaaGccqWF3oaAcqWFSa alcaaMc8UaaGPaVlaaykW7caaMc8UaamyCamaaBaaaleaacaaIYaGa aGOmaaqabaGccqGH9aqpcqWFjpWDdaahaaWcbeqaaiaaikdaaaGccq GHsislcqWFXoqydaahaaWcbeqaaiaaikdaaaGccqWF3oaAdaahaaWc beqaaiaaikdaaaGccqGHsislcqWF7oaBdaahaaWcbeqaaiaaikdaaa aaaa@6D2B@

q 24 = ω 2 δC, q 33 = ω 2 β 2 λ 2 , q 34 =τ ρ 2 γ 2 δ ω 2 S, q 42 = δ ω 2 C/ ρ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXbWaaSbaaSqaaiaaikdacaaI0aaabeaaki abg2da9iabgkHiTGGaaiab=L8a3naaCaaaleqabaGaaGOmaaaakiab =r7aKjaadoeacaGGSaGaaGPaVlaaykW7caaMc8UaamyCamaaBaaale aacaaIZaGaaG4maaqabaGccqGH9aqpcqWFjpWDdaahaaWcbeqaaiaa ikdaaaGccqGHsislcqWFYoGydaahaaWcbeqaaiaaikdaaaGccqWF7o aBdaahaaWcbeqaaiaaikdaaaGccaGGSaGaaGPaVlaaykW7caaMc8Ua amyCamaaBaaaleaacaaIZaGaaGinaaqabaGccqGH9aqpcqWFepaDcq WFbpGCdaahaaWcbeqaaiaaikdaaaGccqWFZoWzdaahaaWcbeqaaiaa ikdaaaGccqGHsislcqWF0oazcqWFjpWDdaahaaWcbeqaaiaaikdaaa GccaWGtbGaaiilaiaaykW7caaMc8UaaGPaVlaadghadaWgaaWcbaGa aGinaiaaikdaaeqaaOGaeyypa0JaeyOeI0YaaSGbaeaacqWF0oazcq WFjpWDdaahaaWcbeqaaiaaikdaaaGccaWGdbaabaGae8xWdi3aaWba aSqabeaacqWFYaGmaaaaaaaa@74BB@  

q 43 =τ γ 2 λ 2 δ ω 2 S/ ρ 2 , q 44 = ω 2 2κ γ 2 S γ 2 λ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXbWaaSbaaSqaaiaaisdacaaIZaaabeaaki abg2da9GGaaiab=r8a0jab=n7aNnaaCaaaleqabaGaaGOmaaaakiab =T7aSnaaCaaaleqabaGaaGOmaaaakiabgkHiTmaalyaabaGae8hTdq Mae8xYdC3aaWbaaSqabeaacaaIYaaaaOGaam4uaaqaaiab=f8aYnaa CaaaleqabaGae8NmaidaaaaakiaacYcacaaMc8UaaGPaVlaaykW7ca WGXbWaaSbaaSqaaiaaisdacaaI0aaabeaakiabg2da9iab=L8a3naa CaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacqWF6oWAcqWFZoWzda ahaaWcbeqaaiaaikdaaaGccaWGtbGaeyOeI0Iae83SdC2aaWbaaSqa beaacaaIYaaaaOGae83UdW2aaWbaaSqabeaacaaIYaaaaaaa@5D60@ .

Диагональные элементы матрицы q ii MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXbWaaSbaaSqaaiaadMgacaWGPbaabeaaaa a@3408@  определяют парциальные квазиструнные колебания, когда все виды волн, кроме одного. “заморожены”. Элементы q 12 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXbWaaSbaaSqaaiaaigdacaaIYaaabeaaaa a@33A3@ , q 21 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXbWaaSbaaSqaaiaaikdacaaIXaaabeaaaa a@33A3@ , образующие подматрицу D 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaaaa@32BA@ , связывают продольные и поперечные волны в вертикальном направлении. Элементы q 34 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXbWaaSbaaSqaaiaaiodacaaI0aaabeaaaa a@33A7@ , q 43 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXbWaaSbaaSqaaiaaisdacaaIZaaabeaaaa a@33A7@ , образующие подматрицу D 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaikdaaeqaaaaa@32BB@ , связывают крутильные и поперечные волны маятниковых колебаний в горизонтальном направлении. Элементы q 24 , q 42 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGXbWaaSbaaSqaaiaaikdacaaI0aaabeaaki aacYcacaWGXbWaaSbaaSqaaiaaisdacaaIYaaabeaaaaa@36FC@ , пропорциональные эксцентриситету Δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHuoaraaa@3270@ , определяют связь этих подматриц. При отсутствии гололеда или при его осесимметричном распределении по сечению провода эксцентриситет Δ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHuoarcqGH9aqpcaaIWaaaaa@3430@ , матрица M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFnbaaaa@3766@  становится блочно-диагональной, а системы для определения форм U,W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGvbGaaiilaiaaykW7caaMc8Uaam4vaaaa@3686@  и V, Ф независимыми. Раскрывая определитель матрицы системы (2.5), придем к уравнению, связывающему волновые числа λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBaaa@32C3@  с частотой ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDaaa@32DC@ :

  D ω,λ = D 1 d 1 d 2 D 2 = D 1 D 2 q 11 q 33 ω 4 Ñ 2 δ 2 / ρ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaeWaaeaaiiaacqWFjpWDcaGGSaGae8 3UdWgacaGLOaGaayzkaaGaeyypa0ZaaqWaaeaafaqabeGacaaabaGa amiramaaBaaaleaacaaIXaaabeaaaOqaaiaadsgadaWgaaWcbaGaaG ymaaqabaaakeaacaWGKbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamir amaaBaaaleaacaaIYaaabeaaaaaakiaawEa7caGLiWoacqGH9aqpda abdaqaaiaadseadaWgaaWcbaGaaGymaaqabaaakiaawEa7caGLiWoa daabdaqaaiaadseadaWgaaWcbaGaaGOmaaqabaaakiaawEa7caGLiW oacqGHsisldaWcgaqaaiaadghadaWgaaWcbaGaaGymaiaaigdaaeqa aOGaamyCamaaBaaaleaacaaIZaGaaG4maaqabaGccqWFjpWDdaahaa WcbeqaaiaaisdaaaGccaWGrdWaaWbaaSqabeaacaaIYaaaaOGae8hT dq2aaWbaaSqabeaacaaIYaaaaaGcbaGae8xWdi3aaWbaaSqabeaaca aIYaaaaaaaaaa@5E36@ . (2.6)

3. Парциальные колебания. Прежде чем перейти к общему случаю, рассмотрим выделенные группы парциальных колебаний.

3.1. Продольно-поперечные колебания в вертикальной плоскости. Прежде всего рассмотрим парциальную подсистему D 1 UW T =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaOWaaeWaae aacaWGvbGaaGPaVlaadEfaaiaawIcacaGLPaaadaahaaWcbeqaaiaa dsfaaaGccqGH9aqpcaaIWaaaaa@3A5E@ , описывающую продольные и поперечные колебания в вертикальной плоскости. Обозначая: z= λ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bGaeyypa0dccaGae83UdW2aaWbaaSqabe aacaaIYaaaaaaa@35B1@  и сохраняя продольную силу инерции ζ=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaGGaaiab=z7a6jabg2da9iaaigdaai aawIcacaGLPaaaaaa@3616@ , запишем детерминант подматрицы D 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaaaa@32BA@ :

  D 1 = α 2 z 2 α 2 +1 ω 2 z+ α 2 ω 2 ω 2 α 2 η 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadseadaWgaaWcbaGaaGymaaqaba aakiaawEa7caGLiWoacqGH9aqpiiaacqWFXoqydaahaaWcbeqaaiaa ikdaaaGcdaWadaqaaiaadQhadaahaaWcbeqaaiaaikdaaaGccqGHsi sldaqadaqaaiab=f7aHnaaCaaaleqabaGaeyOeI0IaaGOmaaaakiab gUcaRiaaigdaaiaawIcacaGLPaaacqWFjpWDdaahaaWcbeqaaiaaik daaaGccaWG6bGaey4kaSIae8xSde2aaWbaaSqabeaacqGHsislcaaI YaaaaOGae8xYdC3aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacqWFjp WDdaahaaWcbeqaaiaaikdaaaGccqGHsislcqWFXoqydaahaaWcbeqa aiaaikdaaaGccqWF3oaAdaahaaWcbeqaaiaaikdaaaaakiaawIcaca GLPaaaaiaawUfacaGLDbaacqGH9aqpcaaIWaaaaa@5BDD@ . (3.1)

Корни этого полинома вещественны, а их знаки различаются в условно низко- и высокочастотном диапазонах, разграниченных критическим значением ω cr (1) =αη MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4yaiaadkhaae aacaGGOaGaaGymaiaacMcaaaGccqGH9aqpcqWFXoqycqWF3oaAaaa@3B4D@ ; при ω>αη MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDcqGH+aGpcqWFXoqycqWF3oaAaa a@3725@  они положительны, а при ωαη MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDcqGHKjYOcqWFXoqycqWF3oaAaa a@37D2@  имеют различные знаки. Применительно к распространенным типам проводов и длин пролетов эта величина составляет 0.3–1.0 Гц, то есть лежит в диапазоне частот, на которых регистрируются явления пляски проводов [2, 3]. Отметим, что если не учитывать растяжение провода, то рассматриваемая подсистема сведется к единственному уравнению ω 2 α 2 η 2 w+ w =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaGGaaiab=L8a3naaCaaaleqabaGaaG OmaaaakiabgkHiTiab=f7aHnaaCaaaleqabaGaaGOmaaaakiab=D7a OnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadEhacqGHRa WkceWG3bGbayaacqGH9aqpcaaIWaaaaa@4013@ , которое в низкочастотной области не имеет колебательных решений, в результате чего часть низких частот окажется потерянной.

Не выписывая выражений для корней полинома, оценим их соотношение. Так как скорости продольных и поперечных волн сильно различаются и α 2 >>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFXoqydaahaaWcbeqaaiaaikdaaaGccq GH+aGpcqGH+aGpcaaIXaaaaa@366C@ , следует ожидать, что волновые числа и, следовательно, корни z 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bWaaSbaaSqaaiaaigdacaGGSaGaaGOmaa qabaaaaa@345C@  также будут весьма различными. Из теоремы Виета следуют оценки: z 1 =O( ω 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0 Jaam4taiaacIcaiiaacqWFjpWDdaahaaWcbeqaaiaaikdaaaGccaGG Paaaaa@38F2@ , z 2 =O (ω/α ) 2 η 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0 Jaam4tamaabmaabaWaaqWaaeaaiiaacqWFOaakdaWcgaqaaiab=L8a 3bqaaiab=f7aHbaacqWFPaqkdaahaaWcbeqaaiaaikdaaaGccqGHsi slcqWF3oaAdaahaaWcbeqaaiaaikdaaaaakiaawEa7caGLiWoaaiaa wIcacaGLPaaaaaa@4328@  и соотношение: z 1 >> z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaeyOpa4 JaeyOpa4ZaaqWaaeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaaGccaGL hWUaayjcSdaaaa@3A1D@ . Больший корень соответствует поперечным, а меньший – продольным волнам.

Общее решение подсистемы D 1 UW T =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaOWaaeWaae aacaWGvbGaaGPaVlaadEfaaiaawIcacaGLPaaadaahaaWcbeqaaiaa dsfaaaGccqGH9aqpcaaIWaaaaa@3A5E@  в общем случае имеет вид:

  W k = k=1 4 A k e i λ k x ,    U k = k=1 4 i A k σ k e i λ k x = k=1 4 A k σ k e i λ k x+π/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGxbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0 ZaaabCaeaacaWGbbWaaSbaaSqaaiaadUgaaeqaaOGaamyzamaaCaaa leqabaGaamyAaGGaaiab=T7aSnaaBaaameaacaWGRbaabeaaliaadI haaaaabaGaam4Aaiabg2da9iaaigdaaeaacaaI0aaaniabggHiLdGc caGGSaGaaeiiaiaabccacaqGGaGaamyvamaaBaaaleaacaWGRbaabe aakiabg2da9maaqahabaGaamyAaiaadgeadaWgaaWcbaGaam4Aaaqa baGccqWFdpWCdaWgaaWcbaGaam4AaaqabaGccaWGLbWaaWbaaSqabe aacaWGPbGae83UdW2aaSbaaWqaaiaadUgaaeqaaSGaamiEaaaaaeaa caWGRbGaeyypa0JaaGymaaqaaiaaisdaa0GaeyyeIuoakiabg2da9m aaqahabaGaamyqamaaBaaaleaacaWGRbaabeaakiab=n8aZnaaBaaa leaacaWGRbaabeaakiaadwgadaahaaWcbeqaaiaadMgadaqadaqaai ab=T7aSnaaBaaameaacaWGRbaabeaaliaadIhacqGHRaWkcqWFapaC caGGVaGaaGOmaaGaayjkaiaawMcaaaaaaeaacaWGRbGaeyypa0JaaG ymaaqaaiaaisdaa0GaeyyeIuoaaaa@6F5E@ , (3.2)

а из первого уравнения системы (2.5) для каждого λ k   k=1,...,4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBdaWgaaWcbaGaam4AaaqabaGcca qGGaWaaeWaaeaacaWGRbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOl aiaac6cacaGGSaGaaGinaaGaayjkaiaawMcaaaaa@3CFA@  следуют соотношения: U k = q 12 λ k / q 11 λ k =i σ k W k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGvbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0 JaeyOeI0YaaSGbaeaacaWGXbWaaSbaaSqaaiaaigdacaaIYaaabeaa kmaabmaabaaccaGae83UdW2aaSbaaSqaaiaadUgaaeqaaaGccaGLOa GaayzkaaaabaGaamyCamaaBaaaleaacaaIXaGaaGymaaqabaGcdaqa daqaaiab=T7aSnaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaa aacqGH9aqpcaWGPbGae83Wdm3aaSbaaSqaaiaadUgaaeqaaOGaam4v amaaBaaaleaacaWGRbaabeaaaaa@49EE@ , определяющие коэффициенты распределения амплитуд.

В высокочастотной области корни полинома (3.1) вещественны и положительны: z 1,2 = χ 1,2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bWaaSbaaSqaaiaaigdacaGGSaGaaGOmaa qabaGccqGH9aqpiiaacqWFhpWydaqhaaWcbaGaaGymaiaacYcacaaI YaaabaGaaGOmaaaaaaa@3A38@  и волновые числа вещественны:

λ 1,2 =± χ 1 ± χ ˜ 1 =±ω, λ 3,4 =± χ 2 ± χ ˜ 2 =± (ω/α ) 2 η 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBdaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaakiabg2da9iabgglaXkab=D8aJnaaBaaaleaacaaIXaaa beaakiabgIKi7kabgglaXkqb=D8aJzaaiaWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaeyySaeRae8xYdCNaaiilaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uae83UdW2aaSbaaSqaaiaaiodacaGGSaGaaGinaa qabaGccqGH9aqpcqGHXcqScqWFhpWydaWgaaWcbaGaaGOmaaqabaGc cqGHijYUcqGHXcqScuWFhpWygaacamaaBaaaleaacaaIYaaabeaaki abg2da9iabgglaXoaakaaabaWaaqWaaeaacqWFOaakdaWcgaqaaiab =L8a3bqaaiab=f7aHbaacqWFPaqkdaahaaWcbeqaaiab=jdaYaaaki abgkHiTiab=D7aOnaaCaaaleqabaGaaGOmaaaaaOGaay5bSlaawIa7 aaWcbeaaaaa@6E21@ .

Первая пара соответствует медленным, преимущественно поперечным, вторая – быстрым, преимущественно продольным волнам. Им соответствуют коэффициенты распределения:

σ 1,2 =± δ 1 , σ 3,4 =± δ 2 , δ 1 = η α 2 χ 1 ω 2 α 2 χ 1 2 ,   δ 2 = η α 2 χ 2 ω 2 α 2 χ 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFdpWCdaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaakiabg2da9iabgglaXkab=r7aKnaaBaaaleaacaaIXaaa beaakiaacYcacaaMc8UaaGPaVlaaykW7cqWFdpWCdaWgaaWcbaGaaG 4maiaacYcacaaI0aaabeaakiabg2da9iabgglaXkab=r7aKnaaBaaa leaacaaIYaaabeaakiaacYcacaaMc8UaaGPaVlaaykW7cqWF0oazda WgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiab=D7aOjab=f7a HnaaCaaaleqabaGaaGOmaaaakiab=D8aJnaaBaaaleaacaaIXaaabe aaaOqaaiab=L8a3naaCaaaleqabaGaaGOmaaaakiabgkHiTiab=f7a HnaaCaaaleqabaGaaGOmaaaakiab=D8aJnaaDaaaleaacaaIXaaaba GaaGOmaaaaaaGccaGGSaGaaeiiaiaabccacqWF0oazdaWgaaWcbaGa aGOmaaqabaGccqGH9aqpdaWcaaqaaiab=D7aOjab=f7aHnaaCaaale qabaGaaGOmaaaakiab=D8aJnaaBaaaleaacaaIYaaabeaaaOqaaiab =L8a3naaCaaaleqabaGaaGOmaaaakiabgkHiTiab=f7aHnaaCaaale qabaGaaGOmaaaakiab=D8aJnaaDaaaleaacaaIYaaabaGaaGOmaaaa aaaaaa@7910@ .

Общее решение (3.2) может быть записано в эквивалентной тригонометрической форме:

  W= C 1 cos χ 1 x+ C 2 sin χ 1 x+ C 3 cos χ 2 x+ C 4 sin χ 2 x U= δ 1 C 1 sin χ 1 x+ δ 1 C 2 cos χ 1 x δ 2 C 3 sin χ 2 x+ δ 2 C 4 cos χ 2 x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caWGxbGaeyypa0Jaam4qamaaBaaaleaacaaIXaaa beaakiGacogacaGGVbGaai4CaGGaaiab=D8aJnaaBaaaleaacaaIXa aabeaakiaadIhacqGHRaWkcaWGdbWaaSbaaSqaaiaaikdaaeqaaOGa ci4CaiaacMgacaGGUbGae83Xdm2aaSbaaSqaaiaaigdaaeqaaOGaam iEaiabgUcaRiaadoeadaWgaaWcbaGaaG4maaqabaGcciGGJbGaai4B aiaacohacqWFhpWydaWgaaWcbaGaaGOmaaqabaGccaWG4bGaey4kaS Iaam4qamaaBaaaleaacaaI0aaabeaakiGacohacaGGPbGaaiOBaiab =D8aJnaaBaaaleaacaaIYaaabeaakiaadIhaaeaacaWGvbGaeyypa0 JaeyOeI0Iae8hTdq2aaSbaaSqaaiaaigdaaeqaaOGaam4qamaaBaaa leaacaaIXaaabeaakiGacohacaGGPbGaaiOBaiab=D8aJnaaBaaale aacaaIXaaabeaakiaadIhacqGHRaWkcqWF0oazdaWgaaWcbaGaaGym aaqabaGccaWGdbWaaSbaaSqaaiaaikdaaeqaaOGaci4yaiaac+gaca GGZbGae83Xdm2aaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgkHiTiab =r7aKnaaBaaaleaacaaIYaaabeaakiaadoeadaWgaaWcbaGaaG4maa qabaGcciGGZbGaaiyAaiaac6gacqWFhpWydaWgaaWcbaGaaGOmaaqa baGccaWG4bGaey4kaSIae8hTdq2aaSbaaSqaaiaaikdaaeqaaOGaam 4qamaaBaaaleaacaaI0aaabeaakiGacogacaGGVbGaai4Caiab=D8a JnaaBaaaleaacaaIYaaabeaakiaadIhacaGGUaaaaaa@926A@ (3.3)

В низкочастотной области один из корней полинома (3.1) z 1 = χ 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0 dccaGae83Xdm2aa0baaSqaaiaaigdaaeaacaaIYaaaaaaa@3760@  положителен, другой отрицателен: z 2 = χ 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0 JaeyOeI0cccaGae83Xdm2aa0baaSqaaiaaikdaaeaacaaIYaaaaaaa @384F@ . Это дает пару вещественных волновых чисел: λ 1,2 =± χ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBdaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaakiabg2da9iabgglaXkab=D8aJnaaBaaaleaacaaIXaaa beaaaaa@3AAD@  и пару мнимых: λ 3,4 =±i χ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBdaWgaaWcbaGaaG4maiaacYcaca aI0aaabeaakiabg2da9iabgglaXkaadMgacqWFhpWydaWgaaWcbaGa aGOmaaqabaaaaa@3BA0@ . Им соответствуют коэффициенты распределения: σ 1,2 =± δ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFdpWCdaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaakiabg2da9iabgglaXkab=r7aKnaaBaaaleaacaaIXaaa beaaaaa@3AAA@ , σ 3,4 =±i δ 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFdpWCdaWgaaWcbaGaaG4maiaacYcaca aI0aaabeaakiabg2da9iabgglaXkaadMgacqWF0oazdaWgaaWcbaGa aG4maaqabaaaaa@3B9E@ , где δ 3 = η α 2 χ 2 / ω 2 + α 2 χ 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF0oazdaWgaaWcbaGaaG4maaqabaGccq GH9aqpdaWcgaqaaiab=D7aOjab=f7aHnaaCaaaleqabaGaaGOmaaaa kiab=D8aJnaaBaaaleaacaaIYaaabeaaaOqaamaabmaabaGae8xYdC 3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xSde2aaWbaaSqabeaa caaIYaaaaOGae83Xdm2aa0baaSqaaiaaikdaaeaacaaIYaaaaaGcca GLOaGaayzkaaaaaaaa@46AF@ , и общее решение:

  W= C 1 cos χ 1 x+ C 2 sin χ 1 x+ C 3 ch χ 2 x+ C 4 sh χ 2 x U= δ 1 C 1 sin χ 1 x+ δ 1 C 2 cos χ 1 x+ δ 3 C 3 sh χ 2 x+ δ 3 C 4 ch χ 2 x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caWGxbGaeyypa0Jaam4qamaaBaaaleaacaaIXaaa beaakiGacogacaGGVbGaai4CaGGaaiab=D8aJnaaBaaaleaacaaIXa aabeaakiaadIhacqGHRaWkcaWGdbWaaSbaaSqaaiaaikdaaeqaaOGa ci4CaiaacMgacaGGUbGae83Xdm2aaSbaaSqaaiaaigdaaeqaaOGaam iEaiabgUcaRiaadoeadaWgaaWcbaGaaG4maaqabaGccaqGJbGaaeiA aiab=D8aJnaaBaaaleaacaaIYaaabeaakiaadIhacqGHRaWkcaWGdb WaaSbaaSqaaiaaisdaaeqaaOGaae4CaiaabIgacqWFhpWydaWgaaWc baGaaGOmaaqabaGccaWG4baabaGaamyvaiabg2da9iabgkHiTiab=r 7aKnaaBaaaleaacaaIXaaabeaakiaadoeadaWgaaWcbaGaaGymaaqa baGcciGGZbGaaiyAaiaac6gacqWFhpWydaWgaaWcbaGae8xmaedabe aakiaadIhacqGHRaWkcqWF0oazdaWgaaWcbaGaaGymaaqabaGccaWG dbWaaSbaaSqaaiaaikdaaeqaaOGaci4yaiaac+gacaGGZbGae83Xdm 2aaSbaaSqaaiab=fdaXaqabaGccaWG4bGaey4kaSIae8hTdq2aaSba aSqaaiaaiodaaeqaaOGaam4qamaaBaaaleaacaaIZaaabeaakiaabo hacaqGObGae83Xdm2aaSbaaSqaaiaaikdaaeqaaOGaamiEaiabgUca Riab=r7aKnaaBaaaleaacaaIZaaabeaakiaadoeadaWgaaWcbaGaaG inaaqabaGccaqGJbGaaeiAaiab=D8aJnaaBaaaleaacaaIYaaabeaa kiaadIhacaGGUaaaaaa@8EC7@ (3.4)

На рис. 2 показаны точные зависимости параметров χ 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFhpWydaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaaaaa@3519@  и их приближенных значений от частоты. Как видно, они близки практически во всем актуальном диапазоне частот, причем χ 1 >> χ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFhpWydaWgaaWcbaGaaGymaaqabaGccq GH+aGpcqGH+aGpcqWFhpWydaWgaaWcbaGaaGOmaaqabaaaaa@3861@ . В данном случае критическая частота ω cr (1) =9.91 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4yaiaadkhaae aacaGGOaGaaGymaiaacMcaaaGccqGH9aqpcaaI5aGaaiOlaiaaiMda caaIXaaaaa@3AFF@ .

 

Рис. 2. Зависимости модулей волновых чисел χ1, χ2 от частоты ω. Сплошные линии – точные значения, точечные – приближенные. Цифрами от 1 до 6 обозначены соответственно зависимости: χ1(ω), χ1 ~ (ω); –χ2(ω), –χ2 ~ (ω), χ2(ω), χ2 ~ (ω).

 

В дальнейшем используется раздельный анализ мод симметричных (S-мод) и антисимметричных (А-мод). Помещая начало координат в центре пролета, сохраним в (3.3) и (3.4) поочередно только симметричные (четные по w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG3baaaa@3206@ , нечетные по u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG1baaaa@3204@  ) и антисимметричные (нечетные по w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG3baaaa@3206@ , четные по u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG1baaaa@3204@  ) слагаемые. Например, симметричные моды в высокочастотной области согласно (3.3):

  W= C 1 cos χ 1 x+ C 3 cos χ 2 x,   U= δ 1 C 1 sin χ 1 x δ 3 C 3 sin χ 2 x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGxbGaeyypa0Jaam4qamaaBaaaleaacaaIXa aabeaakiGacogacaGGVbGaai4CaGGaaiab=D8aJnaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGdbWaaSbaaSqaaiaaiodaaeqaaO Gaci4yaiaac+gacaGGZbGae83Xdm2aaSbaaSqaaiaaikdaaeqaaOGa amiEaiaacYcacaqGGaGaaeiiaiaabccacaWGvbGaeyypa0JaeyOeI0 Iae8hTdq2aaSbaaSqaaiaaigdaaeqaaOGaam4qamaaBaaaleaacaaI XaaabeaakiGacohacaGGPbGaaiOBaiab=D8aJnaaBaaaleaacaaIXa aabeaakiaadIhacqGHsislcqWF0oazdaWgaaWcbaGaaG4maaqabaGc caWGdbWaaSbaaSqaaiaaiodaaeqaaOGaci4CaiaacMgacaGGUbGae8 3Xdm2aaSbaaSqaaiaaikdaaeqaaOGaamiEaaaa@600F@ . (3.5)

Подчиняя W, U однородным граничным условиям при x = ±1/2, получим частотное уравнение: D 1S = δ 2 cos χ 1 /2 sin χ 2 /2 δ 1 sin χ 1 /2 cos χ 2 /2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaigdacaWGtbaabeaaki abg2da9GGaaiab=r7aKnaaBaaaleaacaaIYaaabeaakiGacogacaGG VbGaai4CamaabmaabaWaaSGbaeaacqWFhpWydaWgaaWcbaGaaGymaa qabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiabgwSixlGacohacaGG PbGaaiOBamaabmaabaWaaSGbaeaacqWFhpWydaWgaaWcbaGae8Nmai dabeaaaOqaaiaaikdaaaaacaGLOaGaayzkaaGaeyOeI0Iae8hTdq2a aSbaaSqaaiaaigdaaeqaaOGaci4CaiaacMgacaGGUbWaaeWaaeaada Wcgaqaaiab=D8aJnaaBaaaleaacaaIXaaabeaaaOqaaiaaikdaaaaa caGLOaGaayzkaaGaeyyXICTaci4yaiaac+gacaGGZbWaaeWaaeaada Wcgaqaaiab=D8aJnaaBaaaleaacqWFYaGmaeqaaaGcbaGaaGOmaaaa aiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOlaaaa@616C@  После определения спектра собственных частот ω k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaWgaaWcbaGaam4Aaaqabaaaaa@33F8@ , для каждой из них, полагая Ñ 1k =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGrdWaaSbaaSqaaiaaigdacaWGRbaabeaaki abg2da9iaaigdaaaa@3602@ , из первого равенства (3.5) определим C 3k = cos χ 1 ( ω k )/2 / cos χ 2 ( ω k )/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGdbWaaSbaaSqaaiaaiodacaWGRbaabeaaki abg2da9iabgkHiTmaalyaabaGaci4yaiaac+gacaGGZbWaaeWaaeaa daWcgaqaaGGaaiab=D8aJnaaBaaaleaacaaIXaaabeaakiaacIcacq WFjpWDdaWgaaWcbaGaam4AaaqabaGccaGGPaaabaGaaGOmaaaaaiaa wIcacaGLPaaaaeaaciGGJbGaai4Baiaacohadaqadaqaamaalyaaba Gae83Xdm2aaSbaaSqaaiaaikdaaeqaaOGaaiikaiab=L8a3naaBaaa leaacaWGRbaabeaakiaacMcaaeaacaaIYaaaaaGaayjkaiaawMcaaa aaaaa@4DF9@  и соответствующие моды W k ,  U k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGxbWaaSbaaSqaaiaadUgaaeqaaOGaaiilai aabccacaWGvbWaaSbaaSqaaiaadUgaaeqaaaaa@3655@ . Аналогично для низкочастотной области, а также для А-мод. Результаты сведены в табл. 1, где строки соответствуют типам мод, а столбцы – частотным областям и использованы обозначения:

ψ 1 = cos χ 1 /2 cos χ 2 /2 ,  ψ 2 = sin χ 1 /2 sin χ 2 /2 ,  ψ 3 = cos χ 1 /2 ñh χ 2 /2 , ψ 4 = sin χ 1 /2 sh χ 2 /2 ψ 5 = cos χ 1 /2 cos ω/2 ,  ψ 6 = sin χ 1 /2 sin ω/2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaGGaaiab=H8a5naaBaaaleaacaaIXaaabe aakiabg2da9maalaaabaGaai4yaiaac+gacaGGZbWaaeWaaeaadaWc gaqaaiab=D8aJnaaBaaaleaacaaIXaaabeaaaOqaaiaaikdaaaaaca GLOaGaayzkaaaabaGaai4yaiaac+gacaGGZbWaaeWaaeaadaWcgaqa aiab=D8aJnaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaacaGLOa GaayzkaaaaaiaacYcacaqGGaGae8hYdK3aaSbaaSqaaiaaikdaaeqa aOGaeyypa0ZaaSaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaamaaly aabaGae83Xdm2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaaaiaa wIcacaGLPaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaamaalyaaba Gae83Xdm2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaiaawIca caGLPaaaaaGaaiilaiaabccacqWFipqEdaWgaaWcbaGaaG4maaqaba GccqGH9aqpdaWcaaqaaiaacogacaGGVbGaai4CamaabmaabaWaaSGb aeaacqWFhpWydaWgaaWcbaGaaGymaaqabaaakeaacaaIYaaaaaGaay jkaiaawMcaaaqaaiaabgpacaqGObWaaeWaaeaadaWcgaqaaiab=D8a JnaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaacaGLOaGaayzkaa aaaiaacYcacaaMc8UaaGPaVlaaykW7cqWFipqEdaWgaaWcbaGaaGin aaqabaGccqGH9aqpdaWcaaqaaiGacohacaGGPbGaaiOBamaabmaaba WaaSGbaeaacqWFhpWydaWgaaWcbaGaaGymaaqabaaakeaacaaIYaaa aaGaayjkaiaawMcaaaqaaiaabohacaqGObWaaeWaaeaadaWcgaqaai ab=D8aJnaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaacaGLOaGa ayzkaaaaaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uae8 hYdK3aaSbaaSqaaiaaiwdaaeqaaOGaeyypa0ZaaSaaaeaacaGGJbGa ai4BaiaacohadaqadaqaamaalyaabaGae83Xdm2aaSbaaSqaaiaaig daaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaaaeaacaGGJbGaai4B aiaacohadaqadaqaamaalyaabaGae8xYdChabaGaaGOmaaaaaiaawI cacaGLPaaaaaGaaiilaiaabccacaaMc8Uae8hYdK3aaSbaaSqaaiaa iAdaaeqaaOGaeyypa0ZaaSaaaeaaciGGZbGaaiyAaiaac6gadaqada qaamaalyaabaGae83Xdm2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOm aaaaaiaawIcacaGLPaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaam aalyaabaGae8xYdChabaGaaGOmaaaaaiaawIcacaGLPaaaaaGaaiOl aaaaaa@E8F6@

 

Таблица 1. Уравнения и моды колебаний в вертикальной плоскости

UW

Низкие частоты

Высокие частоты

S

D1S=δ3cosχ12shχ22++  δ1sinχ12chχ22=0               W=cosχ1xψ3 ch χ2x          U=δ1sinχ1xδ3ψ3 sh χ2xD1S=δ2cosχ12sinχ22δ1sinχ12cosχ22=0                W=cosχ1xψ1cosχ2x            U=δ1sinχ1x+δ2ψ1sinχ2x

A

D1S=δ3sinχ12chχ22δ1cosχ12shχ22=0               W=sinχ1xψ4 sh χ2x           U=δ1cosχ1xδ3ψ4 ch χ2xD1S=δ2sinχ12cosχ22δ1sinχ22cosχ12=0                 W=sinχ1xψ2sinχ2x             U=δ1cosχ1xδ2ψ2cosχ2x

 

На рис. 3 приведены значения первых шести частот и формы симметричных (a, b, c) и антисимметричных колебаний (d, e, f). Как видно, начиная примерно с четвертой частоты, между ними устанавливается практически постоянный интервал, что характерно для колебаний прямолинейной струны. Отметим существенное отличие первых мод от “струнных”, следующих закону синуса. Однако, начиная с четвертой-пятой частоты, форма колебаний приближается к синусоидальной.

 

Рис. 3. Зависимость частот от номера гармоники симметричных и антисимметричных колебаний (a, d); формы колебаний: поперечные (b, c) и продольные (e, f) компоненты. Цифрами обозначены номера гармоник.

 

3.2. Маятниково-крутильные колебания. Рассмотрим вторую парциальную подсистему D 2 VΦ T =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaikdaaeqaaOWaaeWaae aacaWGwbGaeuOPdyeacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaa aOGaeyypa0JaaGimaaaa@3973@ , описывающую крутильные и поперечные (маятниковые) колебания в горизонтальной плоскости. Пренебрегая слагаемыми O( τ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaaiikaGGaaiab=r8a0naaCaaaleqaba GaaGOmaaaakiaacMcaaaa@35F4@  имеем:

  D 2 = γ 2 β 2 z 2 z ω 2 γ 2 + ω 2 β 2 2κS2δεS ω 2 β 2 + ω 4 β 2 γ 2 1 δ 2 ρ 2 S 2 2κS ω 2 β 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadseadaWgaaWcbaGaaGOmaaqaba aakiaawEa7caGLiWoacqGH9aqpiiaacqWFZoWzdaahaaWcbeqaaiaa ikdaaaGccqWFYoGydaahaaWcbeqaaiaaikdaaaGcdaWadaqaaiaadQ hadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG6bWaaeWaaeaadaWc aaqaaiab=L8a3naaCaaaleqabaGaaGOmaaaaaOqaaiab=n7aNnaaCa aaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiab=L8a3naaCaaa leqabaGaaGOmaaaaaOqaaiab=j7aInaaCaaaleqabaGaaGOmaaaaaa GccqGHsislcaaIYaGae8NUdSMaam4uaiabgkHiTiaaikdacqWF0oaz cqWF1oqzcaWGtbWaaSaaaeaacqWFjpWDdaahaaWcbeqaaiaaikdaaa aakeaacqWFYoGydaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzk aaGaey4kaSYaaSaaaeaacqWFjpWDdaahaaWcbeqaaiaaisdaaaaake aacqWFYoGydaahaaWcbeqaaiaaikdaaaGccqWFZoWzdaahaaWcbeqa aiaaikdaaaaaaOWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacqWF0o azdaahaaWcbeqaaiaaikdaaaaakeaacqWFbpGCdaahaaWcbeqaaiaa ikdaaaaaaOGaam4uamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawM caaiabgkHiTiaaikdacqWF6oWAcaWGtbWaaSaaaeaacqWFjpWDdaah aaWcbeqaaiaaikdaaaaakeaacqWFYoGydaahaaWcbeqaaiaaikdaaa aaaaGccaGLBbGaayzxaaGaeyypa0JaaGimaaaa@7CC3@ . (3.6)

Для этой подсистемы также существует критическая частота, разделяющая высоко- и низкочастотные диапазоны: ω cr (2) = 2 γ 2 κS/ 1 δ 2 S 2 / ρ 2 γ 2κS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4yaiaadkhaae aacaGGOaGaaGOmaiaacMcaaaGccqGH9aqpdaGcaaqaaiaaikdacqWF ZoWzdaahaaWcbeqaaiaaikdaaaGccqWF6oWAcaWGtbGaai4lamaabm aabaGaaGymaiabgkHiTmaalyaabaGae8hTdq2aaWbaaSqabeaacaaI YaaaaOGaam4uamaaCaaaleqabaGaaGOmaaaaaOqaaiabeg8aYnaaCa aaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaSqabaGccqGHijYU cqWFZoWzdaGcaaqaaiaaikdacqWF6oWAcaWGtbaaleqaaaaa@4FC2@ . Отметим, что при уменьшении угла статического закручивания φ S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFgpGAdaWgaaWcbaGaam4uaaqabaaaaa@33D0@  инерционная связь поперечной и крутильной волн ослабевает, низкочастотная область сокращается и при S=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGtbGaeyypa0JaaGimaaaa@33A2@  (горизонтально ориентированная гололедная оболочка) полностью исчезает. Отмеченные ранее свойства корней полинома сохраняются, поэтому будем сохранять принятые обозначения волновых чисел, параметров χ 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFhpWydaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaaaaa@3519@  и коэффициентов δ 1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF0oazdaWgaaWcbaGaaGymaiaacYcaca aIYaGaaiilaiaaiodaaeqaaaaa@3674@ , которые теперь рассчитываются на основе корней полинома (3.6). Отличие состоит в том, что соотношение амплитуд, определяемое из третьего уравнения системы (2.5), имеет вид Φ k = σ k V k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHMoGrdaWgaaWcbaGaam4AaaqabaGccqGH9a qpiiaacqWFdpWCdaWgaaWcbaGaam4AaaqabaGccaWGwbWaaSbaaSqa aiaadUgaaeqaaaaa@3995@ , где σ k = q 33 λ k / q 34 λ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFdpWCdaWgaaWcbaGaam4AaaqabaGccq GH9aqpdaWcgaqaaiaadghadaWgaaWcbaGaaG4maiaaiodaaeqaaOWa aeWaaeaacqWF7oaBdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPa aaaeaacaWGXbWaaSbaaSqaaiaaiodacaaI0aaabeaakmaabmaabaGa e83UdW2aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaaaaaa@431D@  и все коэффициенты распределения вещественны. Отметим, что последнее уравнение системы (2.4) для крутильной компоненты, взятое отдельно от поступательных компонент: φ ¨ ñ φ 2 φ +2mgΔφsin φ S =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacuWFgpGAgaWaaiabgkHiTiaadgpadaqhaa WcbaGae8NXdOgabaGaaGOmaaaakiqb=z8aQzaagaGaey4kaSIaaGOm aiaad2gacaWGNbGaeuiLdqKae8NXdOMaci4CaiaacMgacaGGUbGae8 NXdO2aaSbaaSqaaiaadofaaeqaaOGaeyypa0JaaGimaaaa@47A1@ , ниже критической частоты ω cr (2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4yaiaadkhaae aacaGGOaGaaGOmaiaacMcaaaaaaa@36FD@  не имеет колебательного решения.

При условиях, выполняющихся для большинства проводов ВЛЭ ( γ 2 >>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFZoWzdaahaaWcbeqaaiaaikdaaaGccq GH+aGpcqGH+aGpcaaIXaaaaa@3674@ , τ<<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFepaDcqGH8aapcqGH8aapcaaIXaaaaa@3597@ , δ 2 / ρ 2 <<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcgaqaaGGaaiab=r7aKnaaCaaaleqabaGaaG OmaaaaaOqaaiab=f8aYnaaCaaaleqabaGaaGOmaaaaaaGccqGH8aap cqGH8aapcaaIXaaaaa@392E@  ), оценка корней полинома дает:

  z 1 = χ 1 2 z ˜ 1 = ω 2 / β 2 , z 2 = χ 2 2 z ˜ 2 = ω 2 / γ 2 2κS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0 dccaGae83Xdm2aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaeyisISRa bmOEayaaiaWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaaSGbaeaacq WFjpWDdaahaaWcbeqaaiaaikdaaaaakeaacqWFYoGydaahaaWcbeqa aiaaikdaaaaaaOGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7daabda qaaiaadQhadaWgaaWcbaGaaGOmaaqabaaakiaawEa7caGLiWoacqGH 9aqpcqWFhpWydaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHijYUda abdaqaaiqadQhagaacamaaBaaaleaacaaIYaaabeaaaOGaay5bSlaa wIa7aiabg2da9maaemaabaWaaSGbaeaacqWFjpWDdaahaaWcbeqaai aaikdaaaaakeaacqWFZoWzdaahaaWcbeqaaiaaikdaaaaaaOGaeyOe I0IaaGOmaiab=P7aRjaadofaaiaawEa7caGLiWoaaaa@6665@ . (3.7)

Первый корень соответствует медленным маятниковым колебаниям, частоты которых близки к частотам поперечных вертикальных, а второй – относительно быстрым крутильным. Проверка показывает, что эта оценка так же, как и в случае колебаний первой группы, справедлива для типовых проводов ВЛЭ. Это видно из графиков на рис. 4,а, где приведены практически совпадающие зависимости точных λ 1,2 = z 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaGGaaiab=T7aSnaaBaaaleaacaaIXa GaaiilaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaacaWG6bWaaSbaaSqa aiaaigdacaGGSaGaaGOmaaqabaaabeaaaOGaayjkaiaawMcaaaaa@3B1B@  и приближенных λ ˜ 1,2 = z ˜ 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiqbeU7aSzaaiaWaaSbaaSqaaiaaig dacaGGSaGaaGOmaaqabaGccqGH9aqpdaGcaaqaamaaemaabaGabmOE ayaaiaWaaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaaakiaawEa7ca GLiWoaaSqabaaakiaawIcacaGLPaaaaaa@3E6B@  волновых чисел от частоты. Интересно отметить, что для крутильных колебаний эти зависимости в низкочастотной области (в данном случае ω cr (2) 40 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4yaiaadkhaae aacaGGOaGaaGOmaiaacMcaaaGccqGHijYUcaaI0aGaaGimaaaa@3A30@  ) имеют аномальный характер: волновое число не уменьшается с частотой, что характерно для чисто упругих крутильных колебаний жестких конструкций типа валов.

 

Рис. 4. а) – точные и приближенные зависимости волновых чисел от частоты; цифрами от 1 до 6 обозначены соответственно зависимости: λ1(ω), λ1 ~ (ω), –λ2(ω), –λ2 ~ (ω), λ2(ω), λ2 ~ (ω); b) – зависимости волновых чисел крутильных колебаний от частоты при различных значениях параметра к = 80, 40, 20, 5, 1, 0, характеризующего обледенение.

 

В случае относительно гибкого провода в выражении z ˜ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiqadQhagaacamaaBaaaleaacaaIYa aabeaaaOGaay5bSlaawIa7aaaa@362C@  роль первого слагаемого, связанного с крутильной жесткостью, на низких частотах падает и основную роль играет второе – связанное с силами гравитации при несовпадении центров массы и жесткости в поперечном сечении провода.

Эту особенность крутильных колебаний иллюстрируют кривые на рис. 4,b, где приведены зависимости волновых чисел от частоты при различных значениях параметра κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF6oWAaaa@32C1@ , обобщенно характеризующего обледенение. Кривые соответствуют значениям κ=80,40,20,5,1,0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF6oWAcqWF9aqpcqWF4aaocqWFWaamcq WFSaalcaaMc8Uae8hnaqJae8hmaaJae8hlaWIaaGPaVlab=jdaYiab =bdaWiab=XcaSiaaykW7cqWF1aqncqWFSaalcaaMc8UaaGymaiaacY cacaaMc8Uae8hmaadaaa@47A4@ . Видно, что при уменьшении этого параметра аномалия смещается в область низких частот и исчезает при отсутствии гололеда, а дисперсионная зависимость восстанавливает нормальный вид λ~ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBcaqG+bGae8xYdChaaa@358C@ . Эта особенность должна играть существенную роль при колебаниях проводов, в особенности при длинных пролетах ВЛЭ.

Общее решение подсистемы D 2 VΦ T =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaikdaaeqaaOWaaeWaae aacaWGwbGaeuOPdyeacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaa aOGaeyypa0JaaGimaaaa@3973@ , таким образом, имеет вид:

V k = k=1 4 B k e i λ k x ,   Φ k = k=1 4 B k σ k e i λ k x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0 ZaaabCaeaacaWGcbWaaSbaaSqaaiaadUgaaeqaaOGaamyzamaaCaaa leqabaGaamyAaGGaaiab=T7aSnaaBaaameaacaWGRbaabeaaliaadI haaaaabaGaam4Aaiabg2da9iaaigdaaeaacaaI0aaaniabggHiLdGc caGGSaGaaeiiaiaabccacqqHMoGrdaWgaaWcbaGaam4AaaqabaGccq GH9aqpdaaeWbqaaiaadkeadaWgaaWcbaGaam4AaaqabaGccqWFdpWC daWgaaWcbaGaam4AaaqabaGccaWGLbWaaWbaaSqabeaacaWGPbGae8 3UdW2aaSbaaWqaaiaadUgaaeqaaSGaamiEaaaaaeaacaWGRbGaeyyp a0JaaGymaaqaaiaaisdaa0GaeyyeIuoaaaa@577D@ .

В высокочастотной области:

λ 1,2 =± χ 1 , λ 3,4 =± χ 2 ; σ 1,2 = ω 2 χ 1 2 β 2 δ ω 2 Sτ γ 2 ρ 2 χ 1 2 = δ 1 , σ 3,4 = ω 2 χ 2 2 β 2 δ ω 2 Sτ γ 2 ρ 2 χ 2 2 = δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBdaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaakiabg2da9iabgglaXkab=D8aJnaaBaaaleaacaaIXaaa beaakiaacYcacaaMc8UaaGPaVlaaykW7cqWF7oaBdaWgaaWcbaGaaG 4maiaacYcacaaI0aaabeaakiabg2da9iabgglaXkab=D8aJnaaBaaa leaacaaIYaaabeaakiaacUdacaaMc8UaaGPaVlaaykW7cqWFdpWCda WgaaWcbaGaaGymaiaacYcacaaIYaaabeaakiabg2da9maalaaabaGa e8xYdC3aaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iae83Xdm2aa0baaS qaaiaaigdaaeaacaaIYaaaaOGae8NSdi2aaWbaaSqabeaacaaIYaaa aaGcbaGae8hTdqMae8xYdC3aaWbaaSqabeaacaaIYaaaaOGaam4uai abgkHiTiab=r8a0jab=n7aNnaaCaaaleqabaGaaGOmaaaakiab=f8a YnaaCaaaleqabaGaaGOmaaaakiab=D8aJnaaDaaaleaacaaIXaaaba GaaGOmaaaaaaGccqGH9aqpcqWF0oazdaWgaaWcbaGaaGymaaqabaGc caGGSaGaaGPaVlaaykW7caaMc8Uae83Wdm3aaSbaaSqaaiaaiodaca GGSaGaaGinaaqabaGccqGH9aqpdaWcaaqaaiab=L8a3naaCaaaleqa baGaaGOmaaaakiabgkHiTiab=D8aJnaaDaaaleaacaaIYaaabaGaaG Omaaaakiab=j7aInaaCaaaleqabaGaaGOmaaaaaOqaaiab=r7aKjab =L8a3naaCaaaleqabaGaaGOmaaaakiaadofacqGHsislcqWFepaDcq WFZoWzdaahaaWcbeqaaiaaikdaaaGccqWFbpGCdaahaaWcbeqaaiaa ikdaaaGccqWFhpWydaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaOGaey ypa0Jae8hTdq2aaSbaaSqaaiaaikdaaeqaaaaa@9A22@

V= C 1 cos χ 1 x+ C 2 sin χ 1 x+ C 3 cos χ 2 x+ C 4 sin χ 2 x Φ= δ 1 C 1 cos χ 1 x+ δ 1 C 2 sin χ 1 x+ δ 2 C 3 cos χ 2 x+ δ 2 C 4 sin χ 2 x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaadAfacqGH9aqpcaWGdbWaaSbaaSqaaiaaigdaaeqaaOGa ci4yaiaac+gacaGGZbaccaGae83Xdm2aaSbaaSqaaiaaigdaaeqaaO GaamiEaiabgUcaRiaadoeadaWgaaWcbaGaaGOmaaqabaGcciGGZbGa aiyAaiaac6gacqWFhpWydaWgaaWcbaGaaGymaaqabaGccaWG4bGaey 4kaSIaam4qamaaBaaaleaacaaIZaaabeaakiGacogacaGGVbGaai4C aiab=D8aJnaaBaaaleaacaaIYaaabeaakiaadIhacqGHRaWkcaWGdb WaaSbaaSqaaiaaisdaaeqaaOGaci4CaiaacMgacaGGUbGae83Xdm2a aSbaaSqaaiaaikdaaeqaaOGaamiEaaqaaiabfA6agjabg2da9iab=r 7aKnaaBaaaleaacaaIXaaabeaakiaadoeadaWgaaWcbaGaaGymaaqa baGcciGGJbGaai4BaiaacohacqWFhpWydaWgaaWcbaGaaGymaaqaba GccaWG4bGaey4kaSIae8hTdq2aaSbaaSqaaiaaigdaaeqaaOGaam4q amaaBaaaleaacaaIYaaabeaakiGacohacaGGPbGaaiOBaiab=D8aJn aaBaaaleaacaaIXaaabeaakiaadIhacqGHRaWkcqWF0oazdaWgaaWc baGaaGOmaaqabaGccaWGdbWaaSbaaSqaaiaaiodaaeqaaOGaci4yai aac+gacaGGZbGae83Xdm2aaSbaaSqaaiaaikdaaeqaaOGaamiEaiab gUcaRiab=r7aKnaaBaaaleaacaaIYaaabeaakiaadoeadaWgaaWcba GaaGinaaqabaGcciGGZbGaaiyAaiaac6gacqWFhpWydaWgaaWcbaGa aGOmaaqabaGccaWG4bGaaiOlaaaaaa@9086@

В низкочастотной области:

λ 1,2 =± χ 1 , λ 3,4 =±i χ 2 ; σ 1,2 = δ 1 , σ 3,4 = ω 2 + χ 2 2 β 2 δ ω 2 S+τ γ 2 ρ 2 χ 2 2 = δ 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBdaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaakiabg2da9iabgglaXkab=D8aJnaaBaaaleaacaaIXaaa beaakiaacYcacaaMc8UaaGPaVlaaykW7cqWF7oaBdaWgaaWcbaGaaG 4maiaacYcacaaI0aaabeaakiabg2da9iabgglaXkaadMgacqWFhpWy daWgaaWcbaGaaGOmaaqabaGccaGG7aGaaGPaVlaaykW7caaMc8Uae8 3Wdm3aaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGccqGH9aqpcqWF 0oazdaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGPaVlaaykW7caaMc8 Uae83Wdm3aaSbaaSqaaiaaiodacaGGSaGaaGinaaqabaGccqGH9aqp daWcaaqaaiab=L8a3naaCaaaleqabaGaaGOmaaaakiabgUcaRiab=D 8aJnaaDaaaleaacaaIYaaabaGaaGOmaaaakiab=j7aInaaCaaaleqa baGaaGOmaaaaaOqaaiab=r7aKjab=L8a3naaCaaaleqabaGaaGOmaa aakiaadofacqGHRaWkcqWFepaDcqWFZoWzdaahaaWcbeqaaiaaikda aaGccqWFbpGCdaahaaWcbeqaaiaaikdaaaGccqWFhpWydaqhaaWcba GaaGOmaaqaaiaaikdaaaaaaOGaeyypa0Jae8hTdq2aaSbaaSqaaiaa iodaaeqaaaaa@7FCB@

V= C 1 cos χ 1 x+ C 2 sin χ 1 x+ C 3 ch χ 2 x+ C 4 sh χ 2 x Φ= δ 1 C 1 cos χ 1 x+ δ 1 C 2 sin χ 1 x+ δ 3 C 3 ch χ 2 x+ δ 3 C 4 sh χ 2 x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaamOvaiabg2da9iaadoeadaWgaaWcbaGa aGymaaqabaGcciGGJbGaai4BaiaacohaiiaacqWFhpWydaWgaaWcba GaaGymaaqabaGccaWG4bGaey4kaSIaam4qamaaBaaaleaacaaIYaaa beaakiGacohacaGGPbGaaiOBaiab=D8aJnaaBaaaleaacaaIXaaabe aakiaadIhacqGHRaWkcaWGdbWaaSbaaSqaaiaaiodaaeqaaOGaae4y aiaabIgacaaMc8Uae83Xdm2aaSbaaSqaaiaaikdaaeqaaOGaamiEai abgUcaRiaadoeadaWgaaWcbaGaaGinaaqabaGccaqGZbGaaeiAaiaa ykW7cqWFhpWydaWgaaWcbaGaaGOmaaqabaGccaWG4baabaGaeuOPdy Kaeyypa0Jae8hTdq2aaSbaaSqaaiaaigdaaeqaaOGaam4qamaaBaaa leaacaaIXaaabeaakiGacogacaGGVbGaai4Caiab=D8aJnaaBaaale aacaaIXaaabeaakiaadIhacqGHRaWkcqWF0oazdaWgaaWcbaGaaGym aaqabaGccaWGdbWaaSbaaSqaaiaaikdaaeqaaOGaci4CaiaacMgaca GGUbGae83Xdm2aaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiab =r7aKnaaBaaaleaacaaIZaaabeaakiaadoeadaWgaaWcbaGaaG4maa qabaGccaqGJbGaaeiAaiaaykW7cqWFhpWydaWgaaWcbaGaaGOmaaqa baGccaWG4bGaey4kaSIae8hTdq2aaSbaaSqaaiaaiodaaeqaaOGaam 4qamaaBaaaleaacaaI0aaabeaakiaabohacaqGObGaaGPaVlab=D8a JnaaBaaaleaacaaIYaaabeaakiaadIhacaGGUaaaaaa@95D8@

Разделяя моды на симметричные и антисимметричные, получим соответствующие частотные уравнения и собственные функции. В данном случае S-модам соответствуют четные, A-модам – нечетные слагаемые в обоих выражениях. Результаты приведены в табл. 2. В правых частях D 2S ,  D 2A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaikdacaWGtbaabeaaki aacYcacaqGGaGaamiramaaBaaaleaacaaIYaGaamyqaaqabaaaaa@3767@  опущены монотонные по частоте множители, не влияющие на положение их нулей. Отметим, что функции (3.5) сохраняют вид и в этом случае, но параметры χ 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFhpWydaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaaaaa@3519@ , δ 1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF0oazdaWgaaWcbaGaaGymaiaacYcaca aIYaGaaiilaiaaiodaaeqaaaaa@3674@  – теперь функции корней полинома (3.6).

 

Таблица 2. Уравнения и моды маятниково-крутильных колебаний

VФ

Низкие частоты

Высокие частоты

S

           D2S=cosχ12=0    V=cosχ1xψ3 ch χ2xΦ=δ1cosχ1xδ3ψ3 ch χ2x    D2S=cosχ12cosχ22=0    V=cosχ1xψ1cosχ2xΦ=δ1cosχ1xδ2ψ1cosχ2x

A

          D2À=sinχ12=0    V=sinχ1xψ4 sh χ2xΦ=δ1sinχ1xδ3ψ4 sh χ2x    D2À=sinχ12sinχ22=0   V=sinχ1xψ2sinχ2xΦ=δ1sinχ1xδ2ψ2sinχ2x

 

Искомые частоты являются нулями функций cos χ 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGJbGaai4BaiaacohaiiaacqWFhpWydaWgaa WcbaGaaGymaiaacYcacaaIYaaabeaaaaa@37EC@  и sin χ 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGZbGaaiyAaiaac6gaiiaacqWFhpWydaWgaa WcbaGaaGymaiaacYcacaaIYaaabeaaaaa@37F1@ . Поэтому обозначим: Ω Ñ1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaamy0aiaaigdaaeqaaa aa@34D5@  – множество нулей функции cos χ 1 /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGJbGaai4Baiaacohadaqadaqaamaalyaaba accaGae83Xdm2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaaaiaa wIcacaGLPaaaaaa@38E5@ , Ω Ñ2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaamy0aiaaikdaaeqaaa aa@34D6@  – множество нулей функции cos χ 2 /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGJbGaai4Baiaacohadaqadaqaamaalyaaba accaGae83Xdm2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaiaa wIcacaGLPaaaaaa@38E6@  в высокочастотном диапазоне. Аналогично: Ω S1 ,  Ω S2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaam4uaiaaigdaaeqaaO GaaiilaiaabccacqqHPoWvdaWgaaWcbaGaam4uaiaaikdaaeqaaaaa @3902@  – для нулей функций sin χ 1 /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGZbGaaiyAaiaac6gadaqadaqaamaalyaaba accaGae83Xdm2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaaaiaa wIcacaGLPaaaaaa@38EA@  и sin χ 2 /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGZbGaaiyAaiaac6gadaqadaqaamaalyaaba accaGae83Xdm2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaiaa wIcacaGLPaaaaaa@38EB@ . Используя приближенные выражения (3.2.2) для параметров χ 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFhpWydaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaaaaa@3519@ , найдем элементы этих множеств:

Ω Ñ1 = 2k+1 βπ , Ω Ñ2 = γ 2KS+ π 2 2k+1 2 > ω cr 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaamy0aiaaigdaaeqaaO Gaeyypa0ZaaiWaaeaadaqadaqaaiaaikdacaWGRbGaey4kaSIaaGym aaGaayjkaiaawMcaaGGaaiab=j7aIjab=b8aWbGaay5Eaiaaw2haai aacYcacaaMc8UaaGPaVlaaykW7cqqHPoWvdaWgaaWcbaGaamy0aiaa ikdaaeqaaOGaeyypa0ZaaiWaaeaacqWFZoWzdaGcaaqaaiaaikdaca WGlbGaam4uaiabgUcaRiab=b8aWnaaCaaaleqabaGaaGOmaaaakmaa bmaabaGaaGOmaiaadUgacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaqabaGccqGH+aGpcqWFjpWDdaqhaaWcbaGa am4yaiaadkhaaeaadaqadaqaaiaaikdaaiaawIcacaGLPaaaaaaaki aawUhacaGL9baaaaa@6137@

Ω S1 = 2kβπ , Ω S2 = γ 2KS+4 k 2 π 2 > ω cr 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaam4uaiaaigdaaeqaaO Gaeyypa0ZaaiWaaeaacaaIYaGaam4AaGGaaiab=j7aIjab=b8aWbGa ay5Eaiaaw2haaiaacYcacaaMc8UaaGPaVlaaykW7cqqHPoWvdaWgaa WcbaGaam4uaiaaikdaaeqaaOGaeyypa0ZaaiWaaeaacqWFZoWzdaGc aaqaaiaaikdacaWGlbGaam4uaiabgUcaRiaaisdacaqGRbWaaWbaaS qabeaacaaIYaaaaOGae8hWda3aaWbaaSqabeaacaaIYaaaaaqabaGc cqGH+aGpcqWFjpWDdaqhaaWcbaGaam4yaiaadkhaaeaadaqadaqaai aaikdaaiaawIcacaGLPaaaaaaakiaawUhacaGL9baaaaa@59EF@ .

Спектры симметричных, антисимметричных мод и общий спектр формируются объединением этих множеств:

Ω S = Ω Ñ1   Ω Ñ2 , Ω À = Ω S1   Ω S2 , Ω VÔ = Ω S   Ω À MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaam4uaaqabaGccqGH9a qpcqqHPoWvdaWgaaWcbaGaamy0aiaaigdaaeqaaOGaeSOkIuLaaeii aiabfM6axnaaBaaaleaacaWGrdGaaGOmaaqabaGccaGGSaGaaGPaVl aaykW7caaMc8UaaGPaVlabfM6axnaaBaaaleaacaWGadaabeaakiab g2da9iabfM6axnaaBaaaleaacaWGtbGaaGymaaqabaGccqWIQisvca qGGaGaeuyQdC1aaSbaaSqaaiaadofacaaIYaaabeaakiaacYcacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabfM6axnaaBaaaleaacaWGwb Gaami1aaqabaGccqGH9aqpcqqHPoWvdaWgaaWcbaGaam4uaaqabaGc cqWIQisvcaqGGaGaeuyQdC1aaSbaaSqaaiaadcmaaeqaaaaa@6670@ .

Коэффициенты k=0,1,2,... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGRbGaeyypa0JaaGimaiaacYcacaaIXaGaai ilaiaaikdacaGGSaGaaiOlaiaac6cacaGGUaaaaa@3957@  – целые числа, при которых удовлетворяются условия cos χ 1,2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGJbGaai4BaiaacohaiiaacqWFhpWydaWgaa WcbaGaaGymaiaacYcacaaIYaaabeaakiabg2da9iaaicdaaaa@39B6@ , sin χ 1,2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGZbGaaiyAaiaac6gaiiaacqWFhpWydaWgaa WcbaGaaGymaiaacYcacaaIYaaabeaakiabg2da9iaaicdaaaa@39BB@ , поэтому их элементы, составляющие множества Ω S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaam4uaaqabaaaaa@339C@  и Ω A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaamyqaaqabaaaaa@338A@ , “перемешаны”; для придания полученному набору принятой формы спектра необходимо упорядочить элементы в порядке возрастания. Результат расчета частот приведен на рис. 5.

 

Рис. 5. Парциальные частоты маятниково-крутильных колебаний: симметричные (заполненные кружки) и антисимметричные частоты (пустые кружки).

 

Формы колебаний в данном случае практически на всех частотах близки к “струнным” и не обнаруживают отмеченных ранее особенностей вертикально поляризованных низкочастотных мод.

4. Связанные колебания. Аналитическое решение. Рассмотрим теперь общую систему (2.5), описывающую связанные колебания, пренебрегая при этом тангенциальной силой инерции и положив в первом уравнении ζ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF2oGEcqGH9aqpcaaIWaaaaa@348C@ . В этом случае детерминант (2.6) примет вид:

  D ω,λ = α 2 β 2 γ 2 z z ω 2 D 0 z =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaeWaaeaaiiaacqWFjpWDcaGGSaGae8 3UdWgacaGLOaGaayzkaaGaeyypa0Jae8xSde2aaWbaaSqabeaacaaI YaaaaOGae8NSdi2aaWbaaSqabeaacaaIYaaaaOGae83SdC2aaWbaaS qabeaacaaIYaaaaOGaamOEamaabmaabaGaamOEaiabgkHiTiab=L8a 3naaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadseadaWgaa WcbaGaaGimaaqabaGcdaqadaqaaiaadQhaaiaawIcacaGLPaaacqGH 9aqpcaaIWaaaaa@4D74@ (4.1)

D 0 = z 2 z ω 2 β 2 + ω 2 γ 2 2κS2δεS ω 2 β 2 + ω 4 γ 2 β 2 1 δ 2 ρ 2 2κS ω 2 β 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0 JaamOEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadQhadaqadaqa amaalaaabaaccaGae8xYdC3aaWbaaSqabeaacaaIYaaaaaGcbaGae8 NSdi2aaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaabaGae8xY dC3aaWbaaSqabeaacaaIYaaaaaGcbaGae83SdC2aaWbaaSqabeaaca aIYaaaaaaakiabgkHiTiaaikdacqaH6oWAcaWGtbGaeyOeI0IaaGOm aiab=r7aKjab=v7aLjaadofadaWcaaqaaiab=L8a3naaCaaaleqaba GaaGOmaaaaaOqaaiab=j7aInaaCaaaleqabaGaaGOmaaaaaaaakiaa wIcacaGLPaaacqGHRaWkdaWcaaqaaiab=L8a3naaCaaaleqabaGaaG inaaaaaOqaaiab=n7aNnaaCaaaleqabaGaaGOmaaaakiab=j7aInaa CaaaleqabaGaaGOmaaaaaaGcdaqadaqaaiaaigdacqGHsisldaWcaa qaaiab=r7aKnaaCaaaleqabaGaaGOmaaaaaOqaaiab=f8aYnaaCaaa leqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGHsislcaaIYaGaeq OUdSMaam4uamaalaaabaGae8xYdC3aaWbaaSqabeaacaaIYaaaaaGc baGae8NSdi2aaWbaaSqabeaacaaIYaaaaaaaaaa@6EFE@ .

Корни полинома D 0 z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaicdaaeqaaOWaaeWaae aacaWG6baacaGLOaGaayzkaaaaaa@354B@  обладают тем же свойством, что и корни полиномов (3.1), (3.6), но к ним добавляется корень χ 3 = ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFhpWydaWgaaWcbaGaaG4maaqabaGccq GH9aqpcqWFjpWDdaahaaWcbeqaaiaaikdaaaaaaa@3770@  и соответствующая ему пара новых волновых чисел: λ 5,6 =± χ 3 =±ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBdaWgaaWcbaGaaGynaiaacYcaca aI2aaabeaakiabg2da9iabgglaXoaakaaabaGae83Xdm2aaSbaaSqa aiaaiodaaeqaaaqabaGccqGH9aqpcqGHXcqScqWFjpWDaaa@3F8D@  вертикально поляризованных поперечных волн. Критическая частота в данном случае равна ω cr 1-2 = 2 γ 2 κS/ 1 δ 2 / ρ 2 γ 2κS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4yaiaadkhaae aadaqadaqaaiaaigdacaqGTaGaaGOmaaGaayjkaiaawMcaaaaakiab g2da9maakaaabaGaaGOmaiab=n7aNnaaCaaaleqabaGaaGOmaaaaki abeQ7aRjaadofacaGGVaWaaeWaaeaacaaIXaGaeyOeI0YaaSGbaeaa cqWF0oazdaahaaWcbeqaaiaaikdaaaaakeaacqWFbpGCdaahaaWcbe qaaiaaikdaaaaaaaGccaGLOaGaayzkaaaaleqaaOGaeyisISRae83S dC2aaOaaaeaacaaIYaGaeqOUdSMaam4uaaWcbeaaaaa@4F97@ , что практически близко к ω cr 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4yaiaadkhaae aadaqadaqaaiaaikdaaiaawIcacaGLPaaaaaaaaa@372D@ . Таким образом, в высокочастотной области:

λ 1,2 =± χ 1 , λ 3,4 =± χ 2 , λ 5,6 =±ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBdaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaakiabg2da9iabgglaXkab=D8aJnaaBaaaleaacaaIXaaa beaakiaacYcacaaMc8UaaGPaVlaaykW7cqWF7oaBdaWgaaWcbaGaaG 4maiaacYcacaaI0aaabeaakiabg2da9iabgglaXkab=D8aJnaaBaaa leaacaaIYaaabeaakiaacYcacaaMc8UaaGPaVlaaykW7cqWF7oaBda WgaaWcbaGaaGynaiaacYcacaaI2aaabeaakiabg2da9iabgglaXkab =L8a3baa@57D1@ ,

в низкочастотной:

  λ 1,2 =± χ 1 , λ 3,4 =±i χ 2 , λ 5,6 =±ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF7oaBdaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaakiabg2da9iabgglaXkab=D8aJnaaBaaaleaacaaIXaaa beaakiaacYcacaaMc8UaaGPaVlaaykW7cqWF7oaBdaWgaaWcbaGaaG 4maiaacYcacaaI0aaabeaakiabg2da9iabgglaXkaadMgacqWFhpWy daWgaaWcbaGaaGOmaaqabaGccaGGSaGaaGPaVlaaykW7caaMc8Uae8 3UdW2aaSbaaSqaaiaaiwdacaGGSaGaaGOnaaqabaGccqGH9aqpcqGH XcqScqWFjpWDaaa@58BF@ .

Нулевой корень – следствие пренебрежения продольной силой инерции; это, однако, не означает пренебрежения упругими тангенциальными смещениями U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGvbaaaa@31E4@ , которые сохраняются и квазистатически “отслеживают” поперечные смещения W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGxbaaaa@31E6@ , но сами по себе практического интереса обычно не представляют. В данном случае имеют место оценки:

  χ 1 ω/β , χ 2 (ω/γ ) 2 2κS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHhpWydaWgaaWcbaGaaGymaaqabaGccqGHij YUdaWcgaqaaiabeM8a3bqaaiabek7aIbaacaGGSaGaaGPaVlaaykW7 caaMc8UaaGPaVlabeE8aJnaaBaaaleaacaaIYaaabeaakiabgIKi7o aakaaabaWaaqWaaeaacaGGOaWaaSGbaeaacqaHjpWDaeaacqaHZoWz aaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacqaH6o WAcaWGtbaacaGLhWUaayjcSdaaleqaaaaa@5163@ .

Общее решение системы (2.5) и коэффициенты распределения имеют вид:

W k = k=1 6 B k e i λ k x ,    V k = k=1 6 B k σ k e i λ k x ,    Φ k = k=1 6 B k ξ k e i λ k x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGxbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0 ZaaabCaeaacaWGcbWaaSbaaSqaaiaadUgaaeqaaOGaamyzamaaCaaa leqabaGaamyAaGGaaiab=T7aSnaaBaaameaacaWGRbaabeaaliaadI haaaaabaGaam4Aaiabg2da9iaaigdaaeaacaaI2aaaniabggHiLdGc caGGSaGaaeiiaiaabccacaqGGaGaamOvamaaBaaaleaacaWGRbaabe aakiabg2da9maaqahabaGaamOqamaaBaaaleaacaWGRbaabeaakiab =n8aZnaaBaaaleaacaWGRbaabeaakiaadwgadaahaaWcbeqaaiaadM gacqWF7oaBdaWgaaadbaGaam4AaaqabaWccaWG4baaaaqaaiaadUga cqGH9aqpcaaIXaaabaGaaGOnaaqdcqGHris5aOGaaiilaiaabccaca qGGaGaaeiiaiabfA6agnaaBaaaleaacaWGRbaabeaakiabg2da9maa qahabaGaamOqamaaBaaaleaacaWGRbaabeaakiab=57a4naaBaaale aacaWGRbaabeaakiaadwgadaahaaWcbeqaaiaadMgacqWF7oaBdaWg aaadbaGaam4AaaqabaWccaWG4baaaaqaaiaadUgacqGH9aqpcaaIXa aabaGaaGOnaaqdcqGHris5aaaa@6E21@

σ k = q 34 ( λ k ) q 42 ( λ k )/ D 2 ( λ k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFdpWCdaWgaaWcbaGaam4AaaqabaGccq GH9aqpdaWcgaqaaiaadghadaWgaaWcbaGaaG4maiaaisdaaeqaaOGa aiikaiab=T7aSnaaBaaaleaacaWGRbaabeaakiaacMcacaWGXbWaaS baaSqaaiaaisdacaaIYaaabeaakiaacIcacqWF7oaBdaWgaaWcbaGa am4AaaqabaGccaGGPaaabaWaaqWaaeaacaWGebWaaSbaaSqaaiaaik daaeqaaOGaaiikaiab=T7aSnaaBaaaleaacaWGRbaabeaakiaacMca aiaawEa7caGLiWoaaaaaaa@4BC8@ , ξ k = q 33 λ k q 42 λ k / D 2 λ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF+oaEdaWgaaWcbaGaam4AaaqabaGccq GH9aqpdaWcgaqaaiaadghadaWgaaWcbaGaaG4maiaaiodaaeqaaOWa aeWaaeaacqWF7oaBdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPa aacaWGXbWaaSbaaSqaaiaaisdacaaIYaaabeaakmaabmaabaGae83U dW2aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaabaWaaqWaae aacaWGebWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacqWF7oaBdaWg aaWcbaGaam4AaaqabaaakiaawIcacaGLPaaaaiaawEa7caGLiWoaaa aaaa@4C57@ .

Так как среди них есть попарно равные, обозначим:

σ 1 = σ 2 = δ 1 ,  σ 3 = σ 4 = δ 2 ,  σ 5 = σ 6 = δ 3 ; ξ 1 = ξ 2 = δ 4 ,  ξ 3 = ξ 4 = δ 5 ,  ξ 5 = ξ 6 = δ 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFdpWCdaWgaaWcbaGaaGymaaqabaGccq GH9aqpcqWFdpWCdaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqWF0oaz daWgaaWcbaGaaGymaaqabaGccaGGSaGaaeiiaiab=n8aZnaaBaaale aacaaIZaaabeaakiabg2da9iab=n8aZnaaBaaaleaacaaI0aaabeaa kiabg2da9iab=r7aKnaaBaaaleaacaaIYaaabeaakiaacYcacaqGGa Gae83Wdm3aaSbaaSqaaiaaiwdaaeqaaOGaeyypa0Jae83Wdm3aaSba aSqaaiaaiAdaaeqaaOGaeyypa0Jae8hTdq2aaSbaaSqaaiaaiodaae qaaOGaai4oaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uae8NVdG3a aSbaaSqaaiaaigdaaeqaaOGaeyypa0Jae8NVdG3aaSbaaSqaaiaaik daaeqaaOGaeyypa0Jae8hTdq2aaSbaaSqaaiaaisdaaeqaaOGaaiil aiaabccacqWF+oaEdaWgaaWcbaGaaG4maaqabaGccqGH9aqpcqWF+o aEdaWgaaWcbaGaaGinaaqabaGccqGH9aqpcqWF0oazdaWgaaWcbaGa aGynaaqabaGccaGGSaGaaeiiaiab=57a4naaBaaaleaacaaI1aaabe aakiabg2da9iab=57a4naaBaaaleaacaaI2aaabeaakiabg2da9iab =r7aKnaaBaaaleaacaaI2aaabeaaaaa@7ADB@ .

Не выписывая подробные выражения, заметим только, что они вычисляются на базе решений уравнения (4.1) с учетом различия выражений волновых чисел в низко- и высокочастотной областях. Окончательно решение в высокочастотной области имеет вид:

  W= Ñ 1 cos χ 1 x+ Ñ 2 sin χ 1 x+ Ñ 3 cos χ 2 x+ + Ñ 4 sin χ 2 x+ Ñ 5 cosωx+ Ñ 6 sinωx V= Ñ 1 δ 1 cos χ 1 x+ Ñ 2 δ 1 sin χ 1 x+ Ñ 3 δ 2 cos χ 2 x+ + Ñ 4 δ 2 sin χ 2 x+ Ñ 5 δ 3 cosωx+ Ñ 6 δ 3 sinωx Φ= Ñ 1 δ 4 cos χ 1 x+ Ñ 2 δ 4 sin χ 1 x+ Ñ 3 δ 5 cos χ 2 x+ + Ñ 4 δ 5 sin χ 2 x+ Ñ 5 δ 6 cosωx+ Ñ 6 δ 6 sinωx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGxbGaeyypa0Jaamy0 amaaBaaaleaacaaIXaaabeaakiGacogacaGGVbGaai4CaGGaaiab=D 8aJnaaBaaaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGrdWaaSba aSqaaiaaikdaaeqaaOGaci4CaiaacMgacaGGUbGae83Xdm2aaSbaaS qaaiaaigdaaeqaaOGaamiEaiabgUcaRiaadgnadaWgaaWcbaGaaG4m aaqabaGcciGGJbGaai4BaiaacohacqWFhpWydaWgaaWcbaGaaGOmaa qabaGccaWG4bGaey4kaScabaGaey4kaSIaaGPaVlaadgnadaWgaaWc baGaaGinaaqabaGcciGGZbGaaiyAaiaac6gacqWFhpWydaWgaaWcba GaaGOmaaqabaGccaWG4bGaey4kaSIaamy0amaaBaaaleaacaaI1aaa beaakiGacogacaGGVbGaai4Caiab=L8a3jaadIhacqGHRaWkcaWGrd WaaSbaaSqaaiaaiAdaaeqaaOGaci4CaiaacMgacaGGUbGae8xYdCNa amiEaaqaaiaadAfacqGH9aqpcaWGrdWaaSbaaSqaaiaaigdaaeqaaO Gae8hTdq2aaSbaaSqaaiaaigdaaeqaaOGaci4yaiaac+gacaGGZbGa e83Xdm2aaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiaadgnada WgaaWcbaGaaGOmaaqabaGccqWF0oazdaWgaaWcbaGaaGymaaqabaGc ciGGZbGaaiyAaiaac6gacqWFhpWydaWgaaWcbaGaaGymaaqabaGcca WG4bGaey4kaSIaamy0amaaBaaaleaacaaIZaaabeaakiab=r7aKnaa BaaaleaacaaIYaaabeaakiGacogacaGGVbGaai4Caiab=D8aJnaaBa aaleaacaaIYaaabeaakiaadIhacqGHRaWkaeaacqGHRaWkcaaMc8Ua aGPaVlaadgnadaWgaaWcbaGaaGinaaqabaGccqWF0oazdaWgaaWcba GaaGOmaaqabaGcciGGZbGaaiyAaiaac6gacqWFhpWydaWgaaWcbaGa aGOmaaqabaGccaWG4bGaey4kaSIaamy0amaaBaaaleaacaaI1aaabe aakiab=r7aKnaaBaaaleaacaaIZaaabeaakiGacogacaGGVbGaai4C aiab=L8a3jaadIhacqGHRaWkcaWGrdWaaSbaaSqaaiaaiAdaaeqaaO Gae8hTdq2aaSbaaSqaaiaaiodaaeqaaOGaci4CaiaacMgacaGGUbGa e8xYdCNaamiEaaqaaiabfA6agjabg2da9iaadgnadaWgaaWcbaGaaG ymaaqabaGccqWF0oazdaWgaaWcbaGaaGinaaqabaGcciGGJbGaai4B aiaacohacqWFhpWydaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaS Iaamy0amaaBaaaleaacaaIYaaabeaakiab=r7aKnaaBaaaleaacaaI 0aaabeaakiGacohacaGGPbGaaiOBaiab=D8aJnaaBaaaleaacaaIXa aabeaakiaadIhacqGHRaWkcaWGrdWaaSbaaSqaaiaaiodaaeqaaOGa e8hTdq2aaSbaaSqaaiaaiwdaaeqaaOGaci4yaiaac+gacaGGZbGae8 3Xdm2aaSbaaSqaaiaaikdaaeqaaOGaamiEaiabgUcaRaqaaiabgUca RiaaykW7caWGrdWaaSbaaSqaaiaaisdaaeqaaOGae8hTdq2aaSbaaS qaaiaaiwdaaeqaaOGaci4CaiaacMgacaGGUbGae83Xdm2aaSbaaSqa aiaaikdaaeqaaOGaamiEaiabgUcaRiaadgnadaWgaaWcbaGaaGynaa qabaGccqWF0oazdaWgaaWcbaGaaGOnaaqabaGcciGGJbGaai4Baiaa cohacqWFjpWDcaWG4bGaey4kaSIaamy0amaaBaaaleaacaaI2aaabe aakiab=r7aKnaaBaaaleaacaaI2aaabeaakiGacohacaGGPbGaaiOB aiab=L8a3jaadIhacaGGUaaaaaa@14CF@  (4.2)

Рассматривая симметричные моды и подставляя четные составляющие выражений (4.2) в однородные граничные условия при x=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bGaeyypa0JaaGymaiaac+cacaaIYaaaaa@3537@ , легко видеть, что соответствующие детерминанты (частотные уравнения) имеют вид: D S ~cos χ 1 /2 cos χ 2 /2 cos ω/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaadofaaeqaaOGaaeOFai GacogacaGGVbGaai4CamaabmaabaWaaSGbaeaaiiaacqWFhpWydaWg aaWcbaGaaGymaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiGaco gacaGGVbGaai4CamaabmaabaWaaSGbaeaacqWFhpWydaWgaaWcbaGa aGOmaaqabaaakeaacqWFYaGmaaaacaGLOaGaayzkaaGaci4yaiaac+ gacaGGZbWaaeWaaeaadaWcgaqaaiab=L8a3bqaaiaaikdaaaaacaGL OaGaayzkaaaaaa@4AB2@  в высокочастотной области и D S ~cos χ 1 /2 cos ω/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaadofaaeqaaOGaaeOFai GacogacaGGVbGaai4CamaabmaabaWaaSGbaeaaiiaacqWFhpWydaWg aaWcbaGaaGymaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiGaco gacaGGVbGaai4CamaabmaabaWaaSGbaeaacqWFjpWDaeaacaaIYaaa aaGaayjkaiaawMcaaaaa@42B3@  в низкочастотной (с точностью до монотонного множителя – функции коэффициентов распределения f δ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGMbWaaeWaaeaaiiaacqWF0oazdaWgaaWcba Gaam4AaaqabaaakiaawIcacaGLPaaaaaa@364E@ , который может быть опущен). Следовательно, спектр собственных частот состоит из множества нулей этих функций:

ω k (1) =2πk, ω k (2) =2πkβ, ω k (3) =γ 2κS+ 2πk 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4AaaqaaiaacI cacaaIXaGaaiykaaaakiabg2da9iaaikdacqWFapaCcaWGRbGaaiil aiaaykW7caaMc8UaaGPaVlab=L8a3naaDaaaleaacaWGRbaabaGaai ikaiaaikdacaGGPaaaaOGaeyypa0JaaGOmaiab=b8aWjaadUgacqWF YoGycqWFSaalcaaMc8UaaGPaVlaaykW7cqWFjpWDdaqhaaWcbaGaam 4AaaqaaiaacIcacaaIZaGaaiykaaaakiabg2da9iab=n7aNnaakaaa baGaaGOmaiabeQ7aRjaadofacqGHRaWkdaqadaqaaiaaikdacqWFap aCcaWGRbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaaa aa@6215@ .

Аналогичный результат имеет место для нечетных мод при замене синусов на косинусы:

ω k (1) =π(2k1), ω k (2) =βπ(2k1), ω k (3) =γ 2κS+ π 2 (2k1) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4AaaqaaiaacI cacaaIXaGaaiykaaaakiabg2da9iab=b8aWjaacIcacaaIYaGaam4A aiabgkHiTiaaigdacaGGPaGaaiilaiaaykW7caaMc8UaaGPaVlab=L 8a3naaDaaaleaacaWGRbaabaGaaiikaiaaikdacaGGPaaaaOGaeyyp a0Jae8NSdiMae8hWdaNaaiikaiaaikdacaWGRbGaeyOeI0IaaGymai aacMcacaGGSaGaaGPaVlaaykW7caaMc8Uae8xYdC3aa0baaSqaaiaa dUgaaeaacaGGOaGaaG4maiaacMcaaaGccqGH9aqpcqWFZoWzdaGcaa qaaiaaikdacqaH6oWAcaWGtbGaey4kaSIae8hWda3aaWbaaSqabeaa caaIYaaaaOGaaiikaiaaikdacaWGRbGaeyOeI0IaaGymaiaacMcada ahaaWcbeqaaiaaikdaaaaabeaaaaa@6A55@ .

Сравнение показывает, что спектр Ω VWÔ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaamOvaiaadEfacaWGud aabeaaaaa@35D4@  полной системы (2.5) отличается от спектра Ω VÔ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaamOvaiaadsnaaeqaaa aa@34F8@  системы D 2 VΦ T =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGebWaaSbaaSqaaiaaikdaaeqaaOWaaeWaae aacaWGwbGaeuOPdyeacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaa aOGaeyypa0JaaGimaaaa@3973@  только множеством частот ω k (1) = π 2k+1 /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4AaaqaaiaacI cacaaIXaGaaiykaaaakiabg2da9maalyaabaGae8hWda3aaeWaaeaa caaIYaGaam4AaiabgUcaRiaaigdaaiaawIcacaGLPaaaaeaacaaIYa aaaaaa@3E79@  и ω k (2) =kπ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFjpWDdaqhaaWcbaGaam4AaaqaaiaacI cacaaIYaGaaiykaaaakiabg2da9iaadUgacqWFapaCaaa@39C6@ . Однако в рассматриваемом примере фазовые скорости поперечных вертикально и горизонтально поляризованных волн практически совпадают и их отношение β1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFYoGycqGHijYUcaaIXaaaaa@351C@ . Это означает наличие “почти кратных частот” парциальных вертикальных и маятниковых колебаний. Это обстоятельство может играть существенную роль в процессе самовозбуждения галопирования проводов в ветровом потоке.

Окончательные результаты сведены в табл. 3. В ней обозначено: a 1 ω = δ 1 δ 3 / δ 3 δ 2 ,    b 1 ω = δ 2 δ 1 / δ 3 δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaae aaiiaacqWFjpWDaiaawIcacaGLPaaacqGH9aqpdaWcgaqaamaabmaa baGae8hTdq2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iae8hTdq2aaS baaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaabaWaaeWaaeaacqWF 0oazdaWgaaWcbaGaaG4maaqabaGccqGHsislcqWF0oazdaWgaaWcba GaaGOmaaqabaaakiaawIcacaGLPaaaaaGaaiilaiaabccacaqGGaGa aeiiaiaadkgadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiab=L8a3b GaayjkaiaawMcaaiabg2da9maalyaabaWaaeWaaeaacqWF0oazdaWg aaWcbaGaaGOmaaqabaGccqGHsislcqWF0oazdaWgaaWcbaGaaGymaa qabaaakiaawIcacaGLPaaaaeaadaqadaqaaiab=r7aKnaaBaaaleaa caaIZaaabeaakiabgkHiTiab=r7aKnaaBaaaleaacaaIYaaabeaaaO GaayjkaiaawMcaaaaaaaa@5E9F@ , причем параметры χ 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFhpWydaWgaaWcbaGaaGymaiaacYcaca aIYaaabeaaaaa@3519@ , δ 1...6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF0oazdaWgaaWcbaGaaGymaiaac6caca GGUaGaaiOlaiaaiAdaaeqaaaaa@3671@ , ψ 1...6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWFipqEdaWgaaWcbaGaaGymaiaac6caca GGUaGaaiOlaiaaiAdaaeqaaaaa@369A@  теперь являются функциями корней полинома (4.1).

 

Таблица 3. Уравнения и моды связанных колебаний

WVФ

Низкие частоты

Высокие частоты

S

D12S=cosχ12cosω2=0    W=cosχ1x+a2ψ3 ch χ2x++b2ψ5cosωxV=δ1cosχ1x+δ2a2ψ3 ch χ2x++δ3b2ψ5cosωxÔ=δ4cosχ1x+δ5a2ψ3 ch χ2x++δ6b2ψ5cosωxD12S=cosχ12cosχ22cosω2=0     W=cosχ1x+a1ψ1cosχ2x++b1ψ5cosωxV=δ1cosχ1x+δ2a1ψ1cosχ2x++δ3b1ψ5cosωxΦ=δ4cosχ1x+δ5a1ψ1cosχ2x++δ6b1ψ5cosωx

A

D12A=sinχ12sinω2=0     W=sinχ1x+a1ψ4 sh χ2x++b1ψ6sinωxV=δ1sinχ1x+δ2a1ψ4 sh χ2x++δ3b1ψ6sinωxΦ=δ4sinχ1x+δ5a1ψ4 sh χ2x++δ6b1ψ6sinωxD12A=sinχ12sinχ22sinω2=0W=cosχ1x+a1ψ1cosχ2x++b1ψ5cosωxV=δ1cosχ1x+δ2a1ψ1cosχ2x++δ3b1ψ5cosωxΦ=δ4cosχ1x+δ5a1ψ1cosχ2x++δ6b1ψ5cosωx

 

В заключение заметим, что сведение определения частот к поиску нулей тригонометрических функций специальных аргументов, например cos χ 2 /2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaGGJbGaai4Baiaacohadaqadaqaamaalyaaba accaGae83Xdm2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaiaa wIcacaGLPaaacqGH9aqpcaaIWaaaaa@3AA4@ , эквивалентно замене расчета реального провода к расчету некоторых эквивалентных струн: cos ωL/ a eq =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaGGJbGaai4Baiaacohadaqadaqaamaalyaaba accaGae8xYdCNaamitaaqaaiaadggadaWgaaWcbaGaamyzaiaadgha aeqaaaaaaOGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3CD9@  с фазовыми скоростями a eq MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGHbWaaSbaaSqaaiaadwgacaWGXbaabeaaaa a@33FC@ , достаточно просто выражающимися через параметры провода и характеристики гололедной оболочки.

5. Метод Галеркина. Рассмотрим совместные колебания провода без принятых ранее упрощений, то есть сохраним в уравнениях все компоненты сил инерции и откажемся от усреднения угла статического закручивания провода по длине пролета. Применим к полной системе (2.5) метод Галеркина, используя в качестве базисных функции θ k =sinkπx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiaacqWF4oqCdaWgaaWcbaGaam4AaaqabaGccq GH9aqpciGGZbGaaiyAaiaac6gacaWGRbGae8hWdaNaamiEaaaa@3B6E@ , удовлетворяющие граничным условиям. Решение примем в виде:

  uwvφ T = k=1 K ( a k b k c k d k ) T θ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiaadwhacaaMc8Uaam4DaiaaykW7ca WG2bGaaGPaVJGaaiab=z8aQbGaayjkaiaawMcaamaaCaaaleqabaGa amivaaaakiabg2da9maaqahabaGaaiikaiaadggadaWgaaWcbaGaam 4AaaqabaaabaGaam4Aaiabg2da9iaaigdaaeaacaWGlbaaniabggHi LdGccaaMc8UaamOyamaaBaaaleaacaWGRbaabeaakiaaykW7caWGJb WaaSbaaSqaaiaadUgaaeqaaOGaaGPaVlaadsgadaWgaaWcbaGaam4A aaqabaGccaGGPaWaaWbaaSqabeaacaWGubaaaOGae8hUde3aaSbaaS qaaiaadUgaaeqaaaaa@55C2@ . (5.1)

Подставляя эти разложения в (2.5) и требуя ортогональности результата подстановки базисным функциям, получим однородную систему уравнений относительно коэффициентов разложения. Однородная система, которой должны удовлетворять коэффициенты разложений (5.1), имеет вид Mv=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFnbGaa8 NDaiabg2da9iaaicdaaaa@3A1D@ , где объединенная матрица системы размерности 4K×4K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaI0aGaam4saiabgEna0kaaisdacaWGlbaaaa@363D@  и вектор-столбец неизвестных коэффициентов разложения v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWF2baaaa@378F@  размерностью 4K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaI0aGaam4saaaa@3298@  имеют блочную структуру

M= A C 0 0 C F 0 G 0 0 B D 0 P H Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFnbGaey ypa0ZaaeWaaeaafaqabeabeaaaaaqaaiaadgeaaeaacaWGdbaabaGa aGimaaqaaiaaicdaaeaacqGHsislcaWGdbaabaGaamOraaqaaiaaic daaeaacaWGhbaabaGaaGimaaqaaiaaicdaaeaacaWGcbaabaGaamir aaqaaiaaicdaaeaacaWGqbaabaGaamisaaqaaiaadgfaaaaacaGLOa Gaayzkaaaaaa@4753@ , v= a k b k ñ k d k T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWF2bGaey ypa0ZaaeWaaeaacqWIVlctcaaMc8UaaGPaVlaadggadaWgaaWcbaGa am4AaaqabaGccaaMc8UaamOyamaaBaaaleaacaWGRbaabeaakiaayk W7caWGXdWaaSbaaSqaaiaadUgaaeqaaOGaaGPaVlaadsgadaWgaaWc baGaam4AaaqabaGccaaMc8UaaGPaVlabl+UimbGaayjkaiaawMcaam aaCaaaleqabaGaa8hvaaaaaaa@528D@

с элементами

A nk = ω 2 α 2 k 2 π 2 α nk ,   C nk = α 2 ηkπ β nk , F nk = ω 2 α 2 η 2 k 2 π 2 α nk MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGbbWaaSbaaSqaaiaad6gacaWGRbaabeaaki abg2da9maabmaabaaccaGae8xYdC3aaWbaaSqabeaacaaIYaaaaOGa eyOeI0Iae8xSde2aaWbaaSqabeaacaaIYaaaaOGaam4AamaaCaaale qabaGaaGOmaaaakiab=b8aWnaaCaaaleqabaGaaGOmaaaaaOGaayjk aiaawMcaaiab=f7aHnaaBaaaleaacaWGUbGaam4AaaqabaGccaGGSa GaaeiiaiaabccacaWGdbWaaSbaaSqaaiaad6gacaWGRbaabeaakiab g2da9iabgkHiTiab=f7aHnaaCaaaleqabaGaaGOmaaaakiab=D7aOj aadUgacqWFapaCcqWFYoGydaWgaaWcbaGaamOBaiaadUgaaeqaaOGa aiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOramaaBaaale aacaWGUbGaam4AaaqabaGccqGH9aqpdaqadaqaaiab=L8a3naaCaaa leqabaGaaGOmaaaakiabgkHiTiab=f7aHnaaCaaaleqabaGaaGOmaa aakiab=D7aOnaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadUgadaah aaWcbeqaaiaaikdaaaGccqWFapaCdaahaaWcbeqaaiaaikdaaaaaki aawIcacaGLPaaacqWFXoqydaWgaaWcbaGaamOBaiaadUgaaeqaaaaa @7620@

G nk =δ ω 2 γ nk , B nk = ω 2 β 2 k 2 π 2 α nk ,  D nk =τ γ 2 ρ 2 k 2 π 2 α nk δ ω 2 χ nk MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGhbWaaSbaaSqaaiaad6gacaWGRbaabeaaki abg2da9iabgkHiTGGaaiab=r7aKjab=L8a3naaCaaaleqabaGaaGOm aaaakiab=n7aNnaaBaaaleaacaWGUbGaam4AaaqabaGccaGGSaGaaG PaVlaaykW7caaMc8UaaGPaVlaadkeadaWgaaWcbaGaamOBaiaadUga aeqaaOGaeyypa0ZaaeWaaeaacqWFjpWDdaahaaWcbeqaaiaaikdaaa GccqGHsislcqWFYoGydaahaaWcbeqaaiaaikdaaaGccaWGRbWaaWba aSqabeaacaaIYaaaaOGae8hWda3aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGae8xSde2aaSbaaSqaaiaad6gacaWGRbaabeaakiaa cYcacaqGGaGaaGPaVlaaykW7caWGebWaaSbaaSqaaiaad6gacaWGRb aabeaakiabg2da9iab=r8a0jab=n7aNnaaCaaaleqabaGaaGOmaaaa kiab=f8aYnaaCaaaleqabaGaaGOmaaaakiaadUgadaahaaWcbeqaai aaikdaaaGccqWFapaCdaahaaWcbeqaaiaaikdaaaGccqWFXoqydaWg aaWcbaGaamOBaiaadUgaaeqaaOGaeyOeI0Iae8hTdqMae8xYdC3aaW baaSqabeaacaaIYaaaaOGae83Xdm2aaSbaaSqaaiaad6gacaWGRbaa beaaaaa@7963@

P nk = δ ω 2 γ nk / ρ 2 , H nk =τ γ 2 k 2 π 2 α nk δ ω 2 χ nk / ρ 2 , Q nk = ω 2 2κ γ 2 χ nk γ 2 k 2 π 2 α nk MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGqbWaaSbaaSqaaiaad6gacaWGRbaabeaaki abg2da9iabgkHiTmaalyaabaaccaGae8hTdqMae8xYdC3aaWbaaSqa beaacaaIYaaaaOGae83SdC2aaSbaaSqaaiaad6gacaWGRbaabeaaaO qaaiab=f8aYnaaCaaaleqabaGae8NmaidaaaaakiaacYcacaaMc8Ua aGPaVlaaykW7caaMc8UaamisamaaBaaaleaacaWGUbGaam4Aaaqaba GccqGH9aqpcqWFepaDcqWFZoWzdaahaaWcbeqaaiaaikdaaaGccaWG RbWaaWbaaSqabeaacaaIYaaaaOGae8hWda3aaWbaaSqabeaacaaIYa aaaOGae8xSde2aaSbaaSqaaiaad6gacaWGRbaabeaakiabgkHiTmaa lyaabaGae8hTdqMae8xYdC3aaWbaaSqabeaacaaIYaaaaOGae83Xdm 2aaSbaaSqaaiaad6gacaWGRbaabeaaaOqaaiab=f8aYnaaCaaaleqa baGae8NmaidaaaaakiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadgfadaWgaaWcbaGaamOBaiaadUgaaeqaaOGaeyypa0Jae8xY dC3aaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiab=P7aRjab=n 7aNnaaCaaaleqabaGaaGOmaaaakiab=D8aJnaaBaaaleaacaWGUbGa am4AaaqabaGccqGHsislcqWFZoWzdaahaaWcbeqaaiaaikdaaaGcca WGRbWaaWbaaSqabeaacaaIYaaaaOGae8hWda3aaWbaaSqabeaacaaI YaaaaOGae8xSde2aaSbaaSqaaiaad6gacaWGRbaabeaaaaa@88E4@

P nk = δ ω 2 γ nk / ρ 2 , H nk =τ γ 2 k 2 π 2 α nk δ ω 2 χ nk / ρ 2 , Q nk = ω 2 2κ γ 2 χ nk γ 2 k 2 π 2 α nk MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGqbWaaSbaaSqaaiaad6gacaWGRbaabeaaki abg2da9iabgkHiTmaalyaabaaccaGae8hTdqMae8xYdC3aaWbaaSqa beaacaaIYaaaaOGae83SdC2aaSbaaSqaaiaad6gacaWGRbaabeaaaO qaaiab=f8aYnaaCaaaleqabaGae8NmaidaaaaakiaacYcacaaMc8Ua aGPaVlaaykW7caaMc8UaamisamaaBaaaleaacaWGUbGaam4Aaaqaba GccqGH9aqpcqWFepaDcqWFZoWzdaahaaWcbeqaaiaaikdaaaGccaWG RbWaaWbaaSqabeaacaaIYaaaaOGae8hWda3aaWbaaSqabeaacaaIYa aaaOGae8xSde2aaSbaaSqaaiaad6gacaWGRbaabeaakiabgkHiTmaa lyaabaGae8hTdqMae8xYdC3aaWbaaSqabeaacaaIYaaaaOGae83Xdm 2aaSbaaSqaaiaad6gacaWGRbaabeaaaOqaaiab=f8aYnaaCaaaleqa baGae8NmaidaaaaakiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadgfadaWgaaWcbaGaamOBaiaadUgaaeqaaOGaeyypa0Jae8xY dC3aaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiab=P7aRjab=n 7aNnaaCaaaleqabaGaaGOmaaaakiab=D8aJnaaBaaaleaacaWGUbGa am4AaaqabaGccqGHsislcqWFZoWzdaahaaWcbeqaaiaaikdaaaGcca WGRbWaaWbaaSqabeaacaaIYaaaaOGae8hWda3aaWbaaSqabeaacaaI YaaaaOGae8xSde2aaSbaaSqaaiaad6gacaWGRbaabeaaaaa@88E4@ .

Здесь обозначено:

α nk β nk = 0 1 sinkπx coskπx sinnπxdx , γ nk χ nk = 0 1 cosf(x) sinf(x) sinkπxsinnπxdx f(x)=2π 1 e 0.075κ x 1x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaamaabmaabaqbaeqabiqaaaqaaGGaaiab=f 7aHnaaBaaaleaacaWGUbGaam4AaaqabaaakeaacqWFYoGydaWgaaWc baGaamOBaiaadUgaaeqaaaaaaOGaayjkaiaawMcaaiabg2da9maape habaWaaeWaaeaafaqabeGabaaabaGaci4CaiaacMgacaGGUbGaam4A aiab=b8aWjaadIhaaeaaciGGJbGaai4BaiaacohacaWGRbGae8hWda NaamiEaaaaaiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gacaWGUbGa e8hWdaNaamiEaiaaykW7caWGKbGaamiEaaWcbaGaaGimaaqaaiaaig daa0Gaey4kIipakiaaykW7caGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8+aaeWaaeaafaqabeGabaaabaGae83SdC2aaSbaaS qaaiaad6gacaWGRbaabeaaaOqaaiab=D8aJnaaBaaaleaacaWGUbGa am4AaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0Zaa8qCaeaadaqada qaauaabeqaceaaaeaaciGGJbGaai4BaiaacohacaWGMbGaaiikaiaa dIhacaGGPaaabaGaci4CaiaacMgacaGGUbGaamOzaiaacIcacaWG4b GaaiykaaaaaiaawIcacaGLPaaacaaMc8Uaci4CaiaacMgacaGGUbGa am4Aaiab=b8aWjaadIhaciGGZbGaaiyAaiaac6gacaWGUbGae8hWda NaamiEaiaaykW7caWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Ga ey4kIipaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAgacaGG OaGaamiEaiaacMcacqGH9aqpcaaIYaGae8hWda3aaeWaaeaacaaIXa GaeyOeI0IaamyzamaaCaaaleqabaGaeyOeI0IaaGimaiaac6cacaaI WaGaaG4naiaaiwdacqWF6oWAaaaakiaawIcacaGLPaaacaWG4bWaae WaaeaacaaIXaGaeyOeI0IaamiEaaGaayjkaiaawMcaaiaac6caaaaa @ED5F@

Определитель матрицы M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaerbuLwBLnhiov2DGi1BTfMBaGabdi aa=1eaaiaawEa7caGLiWoaaaa@3A88@  определяет частоты связанных колебаний. Результаты расчетов частот приведены на рис. 6.

 

Рис. 6. Частоты связанных колебаний по методу Галеркина.

 

Для определения собственных функций (форм колебаний) выберем в качестве единицы измерения амплитуду первой гармоники продольных колебаний a 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaaa@32D7@ , являющуюся элементом с номером 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaIXaaaaa@31C5@  в векторе v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWF2baaaa@378F@ , и выразим через нее остальные коэффициенты разложений (3.1) из системы: M 1,1 v ˜ = n (1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFnbWaaS baaSqaamaabmaabaGaaGymaiaacYcacaaIXaaacaGLOaGaayzkaaaa beaakiqa=zhagaacaiabg2da9iabgkHiTiaa=5gadaWgaaWcbaGaai ikaiaaigdacaGGPaaabeaaaaa@4173@ , где M 1,1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFnbWaaS baaSqaamaabmaabaGaaGymaiaacYcacaaIXaaacaGLOaGaayzkaaaa beaaaaa@3B41@  – матрица, образованная из M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFnbaaaa@3766@  вычеркиванием из нее первого столбца и первой строки, а вектор n (1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFUbWaaS baaSqaaiaacIcacaaIXaGaaiykaaqabaaaaa@39C7@  представляет собой вычеркнутый столбец матрицы M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWacaWFnbaaaa@3766@ , из которого удален элемент с номером 1.

6. Заключение. 1) Получены аналитические решения задачи определения спектра собственных частот и форм пространственных колебаний проводов линий электропередачи с учетом гололедных отложений на поверхности провода.

2) Проанализированы соотношения фазовых скоростей всех типов волн и выделена группа частных подсистем, определяющих парциальные колебания, преимущественно регистрируемые в эксплуатационной практике. Показано, что частотные уравнения парциальных подсистем могут быть сведены к традиционным уравнениям частот прямолинейной струны с “приведенной” фазовой скоростью, которая связана простыми зависимостями с характеристиками реального провода.

3) Исследовано влияние гололедной оболочки на спектр колебаний провода. Обнаружена аномальная зависимость волнового числа крутильных колебаний от частоты, особенно сильно проявляющаяся в случае длинных пролетов ВЛЭ. Это обстоятельство важно в связи с тем, что явление галопирования принято объяснять сближением высоких частот крутильных мод с низкими частотами поперечных при обледенении провода, однако изменение соотношения этих частот оказывается существенно более сложным.

Работа выполнена при поддержке гранта РНФ № 22-19-00678.

×

About the authors

А. N. Danilin

Institute of Applied Mechanics, Russian Academy of Sciences

Author for correspondence.
Email: andanilin@yandex.ru
Russian Federation, Moscow

E. A. Denisov

Moscow Institute of Physics and Technology (State University)

Email: denisov.egor@phystech.edu
Russian Federation, Dolgoprudny

V. А. Feldstein

Institute of Applied Mechanics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: dinpro@mail.ru
Russian Federation, Moscow; Dolgoprudny

References

  1. Vibrations of overhead line conductors under the wind influence. Educational and reference manual. Part 1. Fatigue strength. Vibration / Ed. Vinogradov A.A.M.: Publishing house of JSC “Elektrosetstroyproekt”, 2005. 185 p.
  2. Yakovlev L.V. Conductor galloping on overhead power lines and ways to combat it. M.: NTF “Energoprogress”, “Energetik”, 2002. 96 p.
  3. Design of ultra-high voltage power lines / Ed. Alexandrov G.P. St. Petersburg: “Energoatomizdat”, 1993. 368 p.
  4. Zuopeng Wen, Haiwei Xu, Wenjuan Lou. Galloping stability criterion for a 3-DOF system considering aerodynamic stiffness and inertial coupling // Journal of Structural Engineering-ASCE, 2022, V.148, No.6: 04022048. doi: 10.1061/(ASCE)ST.1943-541X.0003328
  5. Wenjuan Lou, Dengguo Wu, Haiwei Xu, Jiang Yu. Galloping stability criterion for 3-DOF coupled motion of an ice-accreted conductor // Journal of Structural Engineering-ASCE, 2020, V.146, No.5: 04020071. doi: 10.1061/(ASCE)ST.1943-541X.0002601
  6. Haiwei Xu, Kunyang Ding, Guohui Shen, Hang Du, Yong Chen. Experimental investigation on wind-induced vibration of photovoltaic modules supported by suspension cables // Engineering Structures, 2024, V.299: 117125. doi: 10.1016/j.engstruct.2023.117125
  7. Danilin A.N., Onuchin E.S., Feldshteyn V.A. Model of thermomechanical vibrations of current-carrying conductors // Internwational Journal for Computational Civil and Structural Engineering. 2022. V.18. No.4. P.39–48. doi: 10.22337/2587-9618-2022-18-4-39-48
  8. Valiullin A.A., Danilin A.N., Feldshteyn V.A. Normal vibrations of sagging conductors of overhead power lines // International Journal for Computational Civil and Structural Engineering. 2022. V.18. No.3. P.147–158. doi: 10.22337/2587-9618-2022-18-3-147-158
  9. GOST 839-80. Non-insulated conductors for overhead power lines. Technical conditions.
  10. Vinogradov A.A., Danilin A.N., Rabinsky L.N. Deformation of multilayer spiral wire structures. Mathematical modeling, examples of use. M.: MAI Publishing House, 2014. 168 p.
  11. Dubois H., Lilien J.L., Dal Maso F. A new theory for frequencies computation of overhead lines bundle conductors // Rev. AIM. Liege. 1991. No.1. 168 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Positive directions of the axes of coordinate systems and rotation angles.

Download (18KB)
3. Fig. 2. Dependences of the moduli of wave numbers χ1, χ2 on the frequency ω. Solid lines are exact values, dotted lines are approximate. Numbers from 1 to 6 indicate the dependencies, respectively: χ1(ω), χ1 ~ (ω); –χ2(ω), –χ2 ~ (ω), χ2(ω), χ2 ~ (ω).

Download (34KB)
4. Fig. 3. Dependence of frequencies on the harmonic number of symmetric and antisymmetric oscillations (a, d); oscillation modes: transverse (b, c) and longitudinal (e, f) components. The numbers indicate the harmonic numbers.

Download (43KB)
5. Fig. 4. a) – exact and approximate dependences of wave numbers on frequency; numbers from 1 to 6 indicate the dependences, respectively: λ1(ω), λ1 ~ (ω), –λ2(ω), –λ2 ~ (ω), λ2(ω), λ2 ~ (ω); b) – dependences of wave numbers of torsional vibrations on frequency for different values ​​of the parameter  = 80, 40, 20, 5, 1, 0, characterizing icing.

Download (47KB)
6. Fig. 5. Partial frequencies of pendulum-torsional oscillations: symmetrical (filled circles) and antisymmetrical frequencies (empty circles).

Download (20KB)
7. Fig. 6. Frequencies of coupled oscillations using the Galerkin method.

Download (16KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».