Orientation of the localized damage zone in brittle solid under true triaxial compression

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of finding the optimal orientation of the localized damage zone in a brittle body under triaxial compression with intermediate stress varying from the minimum (Karman scheme) to the maximum (Becker scheme) principal stress is considered in the thin weakened layer approximation. The undamaged material is described by the relations of the linear-elastic isotropic body, the weakened zone is described by the model of nonlinear elasticity of Academician of the Russian Academy of Sciences V.P. Myasnikov with elastic moduli linearly dependent on the scalar parameter of the damage. The orientation of the weakened zone is given by two angles relative to the direction of action of the two main stresses, and the degree of weakening is given by the value of the damage parameter. The search for the optimal orientation of the zone for fixed values of the control parameters consists in maximizing the function that determines the rate of damage growth in this zone. As a result of the solution of the problem, the optimal orientations of the localized damage zone have been established for different ratios of principal stresses and damage level. It is shown that as the intermediate stress increases, there is a decrease in the angle of inclination of the zone relative to the direction of action of the maximum principal stress, as well as a narrowing of the interval of possible orientations of the zone relative to the direction of action of the intermediate principal stress. Based on the analysis of the ratio of the values of the shear components of the stress tensor in the plane of the localized damage zone, the possible shear directions along this zone are determined.

Full Text

Restricted Access

About the authors

I. A. Panteleev

Institute of Continuous media Mechanics UR RAS

Author for correspondence.
Email: pia@icmm.ru
Russian Federation, Perm

D. V. Lozhkin

Institute of Continuous media Mechanics UR RAS

Email: lozhkin.d@icmm.ru
Russian Federation, Perm

V. A. Lyakhovsky

Geological Survey of Israel

Email: vladimir.lyakhovsky@gmail.com
Israel, Jerusalem

References

  1. X.T. Feng, R. Kong, X.W. Zhang and C.X. Yang, “Experimental study of failure differences in hard rock under true triaxial compression”, Rock Mech. Rock Eng. 52, 2109–2122 (2019). https://doi.org/10.1007/s00603-018-1700-1
  2. K. Mogi, “Effect of the intermediate principal stress on rock failure”, J. Geophys. R. 72, 5117–5131 (1967). https://doi.org/10.1029/jz072i020p05117
  3. B.C. Haimson and C. Chang, “A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite”, Int. J. Rock Mech. Min. Sci. 37, 285–296 (2000). https://doi.org/10.1016/s1365-1609(99)00106-9
  4. B.C. Haimson, “True triaxial stresses and the brittle fracture of rock”, Pure Appl. Geophys. 163, 1101–1130 (2006). https://doi.org/10.1007/s00024-006-0065-7
  5. M.H.B. Nasseri, S.D. Goodfellow, L. Lombos and R.P. Young, “3-D transport and acoustic properties of Fontainebleau sandstone during true-triaxial deformation experiments”, Int. J. Rock Mech. Min. Sci. 69, 1–18 (2014). https://doi.org/10.1016/j.ijrmms.2014.02.014
  6. X.T. Feng, X.W. Zhang, R. Kong and G. Wang, “A novel mogi type true triaxial testing apparatus and its use to obtain complete stress-strain curves of hard rocks”, Rock Mech. Rock Eng. 49, 1649–1662 (2016). https://doi.org/10.1007/s00603-015-0875-y
  7. S. Wang, X. Li, K. Du, S. Wang and M. Tao, “Experimental study of the triaxial strength properties of hollow cylindrical granite specimens under coupled external and internal confining stresses”, Rock Mech. Rock Eng. 51, 2015–2031 (2018). https://doi.org/10.1007/s00603-018-1452-y
  8. J. Browning, P.G. Meredith, C.E. Stuart, D. Healy, S. Harland and T. M. Mitchell, “Acoustic characterization of crack damage evolution in sandstone deformed under conventional and true triaxial loading”, J. Geophys. Res. 122, 4395–4412 (2017). https://doi.org/10.1002/2016jb013646
  9. J. Browning, P.G. Meredith, C. Stuart, S. Harland, D. Healy and T. M. Mitchell, “A directional crack damage memory effect in sandstone under true triaxial loading”, Geophys. Res. Lett. 45, 6878–6886 (2018). https://doi.org/10.1029/2018GL078207
  10. Q.B. Zhang and J. Zhao, “A review of dynamic experimental techniques and mechanical behavior of rock materials”, Rock Mech. Rock Eng. 47, 1411–1478 (2014). https://doi.org/10.1007/s00603-013-0463-y
  11. X. Cai, Z.L. Zhou, K. Liu, X.M. Du and H.Z. Zang, “Water-weakening effects on the mechanical behavior of different rock types: phenomena and mechanisms”, Appl. Sci. 9 (20), 4450 (2019). https://doi.org/10.3390/app9204450
  12. Z.L. Zhou, X. Cai, X.B. Li, W.Z. Cao and X.M. Du, “Dynamic response and energy evolution of sandstone under coupled static–dynamic compression: insights from experimental study into deep rock engineering applications”, Rock Mech. Rock Eng. 53 (3), 1305–1331 (2019). https://doi.org/10.1007/S00603-019-01980-9
  13. Y.T. Wang, X.P. Zhou and M.M Kou, “Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads”, Acta. Geotech. 14 (4), 1161–1193 (2019). https://doi.org/10.1007/s11440-018-0709-7
  14. W. Dang, H. Konietzky, T. Frühwirt and M. Herbst, “Cyclic frictional responses of planar joints under cyclic normal load conditions: laboratory tests and numerical simulations”, Rock Mech. Rock Eng. 53, 337–364 (2020). https://doi.org/10.1007/s00603-019-01910-9
  15. K. Peng, Z. Liu, Q. Zou, Q. Wu and J. Zhou, “Mechanical property of granite from different buried depths under uniaxial compression and dynamic impact: an energy-based investigation”, Powder. Technol. 362, 729–744 (2020). https://doi.org/10.1016/j.powtec.2019.11.101
  16. Q.H. Qian, X.P. Zhou, H.Q. Yang, Y.X. Zhang and X.H. Li, “Zonal disintegration of surrounding rock mass around the diversion tunnels in Jinping II Hydropower Station, Southwestern China”, Theor. Appl. Fract. Mech. 51, 129–138 (2009). https://doi.org/10.1016/j.tafmec.2009.04.006
  17. S. Wang, L. Huang and X. Li, “Analysis of rockburst triggered by hard rock fragmentation using a conical pick under high uniaxial stress”, Tunn. Undergr. Space Tech. 96, 103195 (2020). https://doi.org/10.1016/j.tust.2019.103195
  18. Q. Qian, X. Zhou and E. Xia, “Effects of the axial in situ stresses on the zonal disintegration phenomenon in the surrounding rock masses around a deep circular tunnel”, Physical and technical problems of mineral resources development, No. 2, 88–97 (2012) [in Russian].
  19. C. Qi, K. Li, J. Bai, A.I. Chanyshev and P. Liu, “Strain gradient model of zonal disintegration of rock mass near deep-level tunnels”, Physical and technical problems of mineral resources development, № 1, 25–37 (2017) [in Russian].
  20. K. Mogi, “Effect of the intermediate principal stress on rock failure”, J. Geophys. Res. 72, 5117–5131 (1967). https://doi.org/10.1029/jz072i020p05117
  21. K. Mogi, “Fracture and flow of rocks under high triaxial compression”, J. Geophys. Res. 76, 1255–1269 (1971). https://doi.org/10.1029/jb076i005p01255
  22. C. Chang and B.C. Haimson, “True triaxial strength and deformability of the German Continental Deep Drilling Program (KTB) deep hole amphibolite”, J. Geophys. Res-Sol. Ea. 105, 18999–19013 (2000). https://doi.org/10.1029/2000jb900184
  23. X.D. Ma and B.C. Haimson, “Failure characteristics of two porous sandstones subjected to true triaxial stresses”, J. Geophys. Res-Sol. Ea. 121, 6477–6498 (2016). https://doi.org/10.1002/2016jb012979
  24. You Mingqing, “True-triaxial strength criteria for rock”, International Journal of Rock Mechanics and Mining Sciences 46 (1), 115–127 (2009). https://doi.org/10.1016/j.ijrmms.2008.05.008
  25. L.B. Colmenares and M.D. Zoback, “A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks”, International Journal of Rock Mechanics and Mining Sciences 39 (6), 695–729 (2002). https://doi.org/10.1016/s1365-1609(02)00048-5
  26. Q. Zhang, C. Li, X. Quan, et al., “New true-triaxial rock strength criteria considering intrinsic material characteristics”, Acta. Mech. Sin. 34, 130–142 (2018). https://doi.org/10.1007/S10409-017-0723-2
  27. M. Singh, A. Raj and B. Singh, “Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks”, Int. J. Rock Mech. Min. Sci. 48, 546–555 (2011). https://doi.org/10.1016/j.ijrmms.2011.02.004
  28. Q. Zhang, H.H. Zhu and L. Y. Zhang, “Modification of a generalized three-dimensional Hoek–Brown strength criterion”, Int. J. Rock Mech. Min. Sci. 59, 80–96 (2013). https://doi.org/10.1016/j.ijrmms.2012.12.009
  29. D.M. Klimov, V.I. Karev and Y.F. Kovalenko, “Experimental study of the influence of a triaxial stress state with unequal components on rock permeability”, Mechanics of Solids 50, 633-640 (2015). https://doi.org/10.3103/S0025654415060047
  30. V.I. Karev, D.M. Klimov, Y.F. Kovalenko and KB. Ustinov, “Experimental study of rock creep under true triaxial loading”, Mechanics of Solids 54, 1151–1156 (2019). https://doi.org/ 10.3103/S0025654419080041
  31. V.I. Karev, V.V. Khimulia and N.I. Shevtsov, “Experimental studies of the deformation, destruction and filtration in rocks: a review”, Mechanics of Solids 56, 613–630 (2021). https://doi.org/ 10.3103/S0025654421050125
  32. I.A. Panteleev, V.A. Mubassarova, A.V. Zaitsev, et al., “Kaiser effect in sandstone in polyaxial compression with multistage rotation of an assigned stress ellipsoid”, Journal of Mining Science 56, 370–377 (2020). https://doi.org/10.1134/S1062739120036653
  33. I.A. Panteleev, V.A. Mubassarova, A.V. Zaitsev, et al., “The Kaiser effect under multiaxial nonproportional compression of sandstone”, Doklady Physics 65, 396–399 (2020). https://doi.org/10.1134/S1028335820110075
  34. I.A. Panteleev, V.A. Mubassarova, A.V. Zaitsev, et al., “Features of Kaiser effect manifestation under triaxial disproportional compression of sandstone with reorientation of applied stresses”, Fundamental and applied issues of mining sciences 10 (1), 69–76 (2023) [in Russian]. https://doi.org/10.15372/FPVGN2023100110
  35. I.A. Panteleev, A.V. Zaitsev, K.B. Ustinov, et al., “Orientation nature of the damage-memory effect under triaxial cyclic nonproportional compression of a sandstone”, Vestnik of Samara State Technical University. Series: Physical and Mathematical Sciences 26 (2), 293–310 (2022) [in Russian]. https://doi.org/10.14498/VSGTU1890
  36. Xie Heping, Lu Jun, Li Cunbao, Li Minghui and Gao Mingzhong, “Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review”, International Journal of Mining Science and Technology 32 (5), 915–950 (2022). https://doi.org/10.1016/j.ijmst.2022.05.006
  37. E.M. Anderson, “The dynamics of faulting”, Trans. Edinburgh Geol. Soc. 8, 387–402 (1905). https://doi.org/10.1144/SP367.1
  38. E.S. Hills, Elements of Structural Geology (Methuen, London, 1972). https://doi.org/10.1007/978-94-009-5843-2
  39. I.A. Panteleev and V. A. Lyakhovsky, “Orientation of Fracture in a Brittle Solid under Conventional Triaxial Compression”, Mechanics of Solids 5, 70–92 (2022). https://doi.org/10.3103/S0025654422050107
  40. Yu.N. Rabotnov, Creep of structural elements (Nauka, Moscow, 1966) [in Russian].
  41. E.V. Lomakin, “Nonlinear strain of materials whose resistance depends on the type of stressed state”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 4, 92–99 (1980).
  42. E.V. Lomakin, “Dependence of the limit state of composite and polymeric materials on the type of stress state. I. Experimental dependences and defining relations”, Mech. Compos. Mater. No. 1, 3–9 (1988).
  43. E.V. Lomakin, “Mechanics of media with type-dependent stress state properties”, Phys. Mesomech. 10 (5), 41–52 (2007).
  44. E.V. Lomakin and O.P. Shchendrigna, “Stresses and strains in a disk of physically nonlinear material with stress state dependent properties”, Mechanics of Solids 55 (4), 475–481 (2020). https://doi.org/10.3103/S0025654420040081
  45. S.A. Ambartsumyan, Different-Modulus Elasticity Theory (Nauka, Moscow, 1982) [in Russian].
  46. J. Chaboche, “Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition”, Int. J. Damage Mech. 1, 148-171 (1992). https://doi.org/10.1177/105678959200100201
  47. J. Lemaitre and R. Desmorat, Engineering damage mechanics (Springer-Verlag, Berlin, 2005). https://doi.org/10.1007/b138882
  48. I.Yu. Tsvelodub, “On the simplest different-modular theory of elasticity of isotropic materials”, Vestnik of Samara State University. Natural Science Series. No. 4 (54), 366–371 (2007) [in Russian].
  49. I.Yu. Tsvelodub, “Multimodulus elasticity theory”, Journal of applied mechanics and technical physics 49 (1), 129–135 (2008). https://doi.org/10.1007/s10808-008-0019-1
  50. V.M. Sadovsky, “Rheological models of hetero-modular and granular media”, // Far Eastern Mathematical Journal 4 (2), 252–263 (2003).
  51. V.A. Lyakhovsky and V. P. Myasnikov, “Behavior of an elastic medium with microfractures”, Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 10, 71–75 (1984).
  52. Y. Hamiel, V. Lyakhovsky and Y. Ben-Zion, “The elastic strain energy of damaged solids with applications to nonlinear deformation of crystalline rocks”, Pure Appl. Geophys. 168, 2199–2210 (2011). https://doi.org/10.1007/S00024-011-0265-7
  53. V. Lyakhovsky, Y. Ben-Zion and A. Agnon, “Distributed damage, faulting, and friction”, J. Geophys. Res. 102 (B12), 27635–27649 (1997b). https://doi.org/10.1029/97jb01896
  54. V.A. Lyakhovsky and V.P. Myasnikov, “On the behavior of visco-elastic cracked solid”, Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 4, 28–35 (1985).
  55. V. Lyakhovsky, Z. Reches, R. Weinberger and T. Scott, “Non-linear elastic behavior of damaged rocks”, Geophys. J. Int. 130, 157–166 (1997). https://doi.org/10.1111/j.1365-246X.1997.tb00995.x
  56. F.D. Murnaghan, Finite Deformation of an Elastic Solid (John Wiley, Chapman, New York, 1951). https://doi.org/10.2307/2371405
  57. A. Agnon, V. Lyakhovsky, G. Baer, et al., “Damage distribution and localization during dyke intrusion”, The physics and chemistry of dykes, 65–78 (1995).
  58. E. Shalev and V. Lyakhovsky, “The role of the intermediate principal stress on the direction of damage zone during hydraulic stimulation”, International Journal of Rock Mechanics and Mining Sciences 107, 86–93 (2018). https://doi.org/10.1016/j.ijrmms.2018.05.001
  59. I. Panteleev, V. Lyakhovsky, J. Browning, et al., “Non-linear anisotropic damage rheology model: theory and experimental verification”, European journal of mechanics: A. Solids 85, 104085 (2021). https://doi.org/10.1016/j.euromechsol.2020.104085
  60. Li Xu, Si Guangyao, Cao Anye, et al., “Rock anisotropic damage characterization and its evolution model by integrating acoustic emission tomography and ultrasonic monitoring”, International Journal of Rock Mechanics and Mining Sciences 180, 105817 (2024). https://doi.org/10.1016/j.ijrmms.2024.105817
  61. I.A. Panteleev and V. Lyakhovsky, “On the convexity of potential of nonlinear elastic media model with tensor damage parameter”, Vestnik PNIPU. Mechanika, No. 1, 89–101 (2022). https://doi.org/10.15593/perm.mech/2022.1.08
  62. Du Kun, Yang Chengzhi, Su Ru, et al., “Failure properties of cubic granite, marble, and sandstone specimens under true triaxial stress”, International Journal of Rock Mechanics and Mining Sciences 130, 104309 (2020). https://doi.org/10.1016/j.ijrmms.2020.104309

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Orientation of localized damage zones under conventional triaxial compression.

Download (92KB)
3. Fig. 2. Geometry of a representative volume with a localized damage zone under true triaxial compression (XYZ - global coordinate system, X*Y*Z* - coordinate system of the localized damage zone).

Download (54KB)
4. Fig. 3. Dependence of the functional on the orientation angles of the localized damage zone for the parameter k = 0 (a), k = 0.5 (b), k = 1 (c).

Download (228KB)
5. Fig. 4. Dependence of the normalized functional at angle for different values of the parameter k.

Download (72KB)
6. Fig. 5. Dependence of the angle max, delivering the maximum value to the functional f (k, 0), on the parameter k for two values of the damage parameter (the black line corresponds to the Coulomb-Mohr angle).

Download (56KB)
7. Fig. 6. Schematic representation of the optimal orientation angles of the localized damage zone for the case of

Download (81KB)
8. Fig. 7. Maps of shear direction (I - shear, II - reset-shift, III - reset) in the plane of the localized damage zone for different angles of its orientation at k = 0.5 (a) and k = 1 (b) (dots indicate the considered cases of localized damage zone orientations).

Download (102KB)
9. Fig. 8. Schemes of shear displacements of the medium blocks along the plane of the localized damage zone for cases A1 (reset), A2 (reset-shift) and A3 (horizontal shear).

Download (147KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».