On the Equilibria of a Heavy Hoop Suspended on a Nail
- 作者: Burov A.A.1, Nikonov V.I.1
-
隶属关系:
- Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
- 期: 编号 1 (2024)
- 页面: 185-196
- 栏目: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/262661
- DOI: https://doi.org/10.31857/S1026351924010109
- EDN: https://elibrary.ru/WABISK
- ID: 262661
如何引用文章
详细
We consider the plane problem of the equilibrium of a homogeneous heavy thin elliptical hoop suspended on a thin horizontal nail. Under the assumption that a dry friction force acts between the nail and the hoop, the dependence of the set of equilibrium positions on the friction coefficient and the semi-axes of the ellipse is studied. The results obtained apply to the following problem: to describe the equilibrium positions of a heavy solid (“gun”) suspended on a nail using a rope, both ends of which are fixed in the body. It is shown how such a distribution of results can be carried out directly in the case when the center of mass of the body is located in the middle between the suspension points.
全文:

作者简介
A. Burov
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: jtm@narod.ru
俄罗斯联邦, Moscow, 119333
V. Nikonov
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Email: nikon_v@list.ru
俄罗斯联邦, Moscow, 119333
参考
- P. Appell, Theoretical Mechanics, Vol. 1: Statics. Dynamics Points (Fizmatlit, Moscow, 1960) [in Russian].
- P. Appell, Traité de Mécanique Rationnelle. Tome I (Gauthier-Villars, Paris, 1893).
- T. Levi-Civita and U. Amaldi, Theoretical Mechanics Course, Vol. 1, Part. 2 (Inostr. Lit., Moscow, 1952) [in Russian].
- T. Levi-Civita and U. Amaldi, Lezioni di Meccanica Razionale, Vol. 1, 2nd ed. (Nicola Zanichelli, Bologna, 1923).
- A. V. Rodnikov, “The algorithms for capture of the space garbage using “leier constraint,” Reg. Chaot. Dyn. 11 (4), 483–489 (2006). https://doi.org/10.1070/RD2006v011n04ABEH000366
- A. V. Rodnikov, “On the leier influence on a dumbbell motion in the central Newtonian force field,” Nelin. Dinam. 5 (4), 519–533 (2009). https://doi.org/10.20537/nd0904005
- A. V. Rodnikov, “On a particle motion along the leier fixed in a precessing rigid body,” Nelin. Dinam. 7 (2), 295–311 (2011). https://doi.org/10.20537/nd1102007
- A.V. Rodnikov and P. S. Krasil’nikov, “On spacial motions of an orbital tethered system,” Rus. J. Nonlin. Dyn. 2017. V. 13 (4), 505–518 (2017). https://doi.org/10.20537/nd1704004
- A. A. Burov, “The existence and stability of the equilibria of mechanical systems with constraints produced by large potential forces,” J. Appl. Math. Mech. 67 (2), 193-200 (2003). https://doi.org/10.1016/S0021-8928(03)90005-0
- A. Genda and G. Stepan, “On the stability of bodies suspended asymmetrically with an inelastic rope,” Acta Mech. 234, 3009–3018 (2023). https://doi.org/10.1007/s00707-023-03546-x
- J. H. Jellet, A Treatise on the Theory of Friction (MacMillan, London, 1872).
- A. P. Ivanov, Fundamentals of the Theory of Systems with Friction (Reg. Khaot. Dyn., Moscow, 2011) [in Russian].
- G. M. Rosenblat, Dry Friction and Unilateral Constraints in Solid Mechanics (URSS, Moscow, 2011) [in Russian].
- P. S. Aleksandrov, Course of Analytic Geometry and Linear Algebra (Nauka, Moscow, 1979) [in Russian].
- S. P. Strelkov, “Froude’s pendulum,” Zh. Tekhn. Fiz. 3, 563–573 (1933).
- Z. S. Batalova, V. V. Biryukov, and Y.I. Neimark, “On the motions of the Froude pendulum,” Izv. Vuzov. Mat., No. 3, 3–8 (1977).
- K. Magnus, Oscillations: Introduction to Research of Oscillatory Systems (Mir, Moscow, 1982) [in Russian].
- V. V. Andronov and V. Ph. Zhuravlev, Dry Friction in Problems of Mechanics (IKI, NITs “Regular and Chaotic Dynamics,” Moscow-Izhevsk, 2010) [in Russian].
- J. Awrejcewicz and M. Holicke, “Analytical prediction of chaos in rotated Froude pendulum,” Nonlin. Dyn. 47, 3–24 (2007). https://doi.org/10.1007/s11071-006-9054-8
- A. A. Burov, “Task F2642,” Kvant, No. 1, 24 (2021).
- A. A. Burov, “Task F2642. Solution,” Kvant, No. 4, 23 (2021).
- A. S. Sumbatov, “Conditions for the onset of sliding in a plane system with friction,” J. Appl. Math. Mech. 59 (6), 845–852 (1995). https://doi.org/10.1016/0021-8928(95)00117-4
补充文件
