Anisotropy of Residual Stress Energy in Two-Component Plate Crystal Structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An analytical solution for residual stresses and their energy in an elastically anisotropic two-component plate structure, where the components have an identical type of elastic anisotropy, identical or proportional elastic constants and coinciding principal axes of elastic anisotropy is obtained. The obtained solution has been applied to analyze the anisotropy of the elastic energy of such crystalline structures as the raft structure γ/γ' of single-crystal nickel-base superalloys, multilayer erosion-resistant nanocoatings ZrN/CrN and single-layer coatings of various types. It has been shown that the factor of minimizing the elastic energy of residual stresses has a significant effect on the crystallographic orientation of the interface in multilayer structures and the direction of axis of the growth texture axis of coatings.

About the authors

D. S. Lisovenko

Ishlinsky Institute for Problems in Mechanics RAS

Email: lisovenk@ipmnet.ru
119526, Moscow, Russia

A. I. Epishin

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS

Author for correspondence.
Email: a.epishin2021@gmail.com
142432, Chernogolovka, Moscow Region, Russia

References

  1. Tabatabaeian A., Ghasemi A.R., Shokrieh M.M. et al. Residual stress in engineering materials: A review // Adv. Eng. Mater. 2022. V. 24. № 3. P. 2100786. https://doi.org/10.1002/adem.202100786
  2. Wang X., Zurob H.S., Xu G. et al. Influence of microstructural length scale on the strength and annealing behavior of pearlite, bainite, and martensite // Metall. Mater. Trans. A. 2013. V. 44. P. 1454–1461. https://doi.org/10.1007/s11661-012-1501-1
  3. Appel F., Clemens H., Fischer F. Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 2016. V. 81. P. 55–124. https://doi.org/10.1016/j.pmatsci.2016.01.001
  4. Svetlov I.L., Kuzmina N.A., Neiman A.V. et al. Effect of the rate of solidification on the microstructure, phase composition, and strength of Nb/Nb5Si3 in-situ composites // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. P. 1146–1150. https://doi.org/10.3103/S1062873815090245
  5. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Ion-plasma erosion-resistant nanocoatings based on metal carbides and nitrides // Russ. Metall. 2010. V. 2010. P. 790–799. https://doi.org/10.1134/S0036029510090077
  6. Epishin A., Link T., Bruckner U., Portella P.D. Evolution of the γ/γ'-microstructure during high temperature creep of a nickel-base superalloy // Acta Mater. 2000. V. 48. P. 4169–4177. https://doi.org/10.1016/S1359-6454(00)00197-X
  7. Епишин А.И., Лисовенко Д.С. Экстремальные значения коэффициента Пуассона кубических кристаллов // ЖТФ. 2016. Т. 86. № 10. С. 74–82.
  8. Harris K., Erickson G.L., Sikkenga S.L. et al. Development of the rhenium containing superalloys CMSX-4 & CM 186 LC for single crystal blade and directionally solidified vane applications in advanced turbine engines // Superalloys. 1992. Warrendale, PA: TMS. P. 297–306. https://doi.org/10.7449/1992/Superalloys_1992_297_306
  9. Epishin A., Link T., Brückner U. Microstructural stability of CMSX-4 and CMSX-10 under high temperature creep conditions. Materials for Advanced Power Engineering, FZ Jülich, 2006, P. 507–520.
  10. Epishin A., Fedelich B., Finn M., Künecke G., Rehmer B., Nolze G., Leistner C., Petrushin N., Svetlov I. Investigation of elastic properties of the single-crystal nickel-base superalloy CMSX-4 in the temperature interval between room temperature and 1300°C // Crystals. 2021. V. 11. P. 152. https://doi.org/10.3390/cryst11020152
  11. Glatzel U. Microstructure and internal strains of undeformed and creep deformed samples of a nickel-base superalloy. Berlin.: Verlag Dr. Köster, 1994. 80 p.
  12. Chen X.-J., Struzhkin V.V., Wu Z. et al. Hard superconducting nitrides // PNAS USA. 2005. V. 102. № 9. P. 3198–3201. https://doi.org/10.1073/pnas.0500174102
  13. Antonov V., Iordanova I. First principles study of crystallographic structure and elastic properties of chromium // AIP Conf. Proc. 2010. V. 1203. P. 1149–1154. https://doi.org/10.1063/1.3322328
  14. Samim P.M., Fattah-alhosseini A., Elmkhah H., Imantalab O. Nanoscale architecture of ZrN/CrN coatings: microstructure, composition, mechanical properties and electrochemical behavior // J. Mater. Res. Technol. 2021. V. 15. P. 542–560. https://doi.org/10.1016/j.jmrt.2021.08.018
  15. McKenzie D.R., Yin Y., McFall W.D., Hoang N.H. The orientation dependence of elastic strain energy in cubic crystals and its application to the preferred orientation in titanium nitride thin films // J. Phys.: Condens. Matter. 1996. V. 8. P. 5883–5890. https://doi.org/10.1088/0953-8984/8/32/008
  16. Betsofen S.Y., Ashmarin A.A., Petrov L.M., Grushin I.A., Lebedev M.A. Effect of the ion-plasma process parameters on the texture and properties of TiN and ZrN coatings // Russ. Metall. 2021. V. 2021. P. 1238–1244. https://doi.org/10.1134/S0036029521100037
  17. Second and higher order elastic constants // Ed. by D.F. Nelson. Springer, 1992. V. 29a of Landolt-Börnstein – Group III Condensed Matter. https://doi.org/10.1007/b44185
  18. Kim J.O., Achenbach J.D., Mirkarimi P.B. et al. Elastic constants of single crystal transition metal nitride films measured by line focus acoustic microscopy // J. Appl. Phys. 1992. V. 72. P. 1805–1811. https://doi.org/10.1063/1.351651
  19. Sampath S., Herman H. Rapid solidification and microstructure development during plasma spray deposition // J. Therm. Spray Technol. 1996. V. 5. P. 445–456. https://doi.org/10.1007/BF02645275
  20. Ковенский И.М., Поветкин В.В. Металловедение покрытий, М.: СП Интермет Инжиниринг, 1999. 296 с.
  21. Гончаров О.Ю., Ильин И.А., Титоров Д.Б., Титорова Д.В. Текстуры покрытий молибдена, тантала и борида гафния, полученных химическим газофазным осаждением // Перспективные материалы. 2008. № 4. С. 69–73.
  22. Kirchlechner C., Martinschitz K.J., Daniel R. et al. Residual stresses and thermal fatigue in CrN hard coatings characterized by high-temperature synchrotron X-ray diffraction // Thin Solid Films. 2010. V. 518. № 8. P. 2090–2096. https://doi.org/10.1016/j.tsf.2009.08.011
  23. Лехницкий С.Г. Теория упругости анизотропного тела. М.: Наука, 1977. 416 с.
  24. Макклинток Ф., Аргон А. Деформация и разрушение материалов, М.: Мир, 1970. 443 с.
  25. Голдстейн Г. Классическая механика. М.: Гостехиздат, 1957. 408 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (377KB)
3.

Download (40KB)
4.

Download (63KB)
5.

Download (484KB)
6.

Download (494KB)
7.

Download (132KB)
8.

Download (323KB)
9.

Download (143KB)
10.

Download (158KB)
11.

Download (325KB)

Copyright (c) 2023 Д.С. Лисовенко, А.И. Епишин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies