Fundamental Solutions of the Equations of the Oscillation Theory for Anisotropic Elastic Media
- Autores: Ilyashenko A.V.1
-
Afiliações:
- Moscow State University of Civil Engineering, 129337, Moscow, Russia
- Edição: Nº 5 (2023)
- Páginas: 138-146
- Seção: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/137555
- DOI: https://doi.org/10.31857/S0572329922600852
- EDN: https://elibrary.ru/PYWIFD
- ID: 137555
Citar
Resumo
The construction of fundamental solutions in R3 for the equations of harmonic vibrations in the theory of elasticity of anisotropic elastic media is carried out. Solutions are constructed in the form of multipole series. Theorems on the convergence of series in the topology of compact convergence in R3/0 are proved. The problems on constructing some singular solutions of the theory of vibrations of an anisotropic body are discussed. The fundamental solution of the oscillation equations for an isotropic medium is obtained in a closed form.
Palavras-chave
Sobre autores
A. Ilyashenko
Moscow State University of Civil Engineering, 129337, Moscow, Russia
Autor responsável pela correspondência
Email: avi_56@mail.ru
Россия, Москва
Bibliografia
- Купрадзе В.Д. Граничные задачи теории установившихся упругих колебаний // УМН. 1953. Т. 8. № 3. С. 21–74.
- Kupradze V.D. Dynamical problems in elasticity. Amsterdam: North-Holland Publ. Comp., 1963.
- Burchuladze T. Non-stationary problems of generalized elastothermodiffusion for inhomogeneous media // Georgian Math. J. 1994. V. 1. P. 587–598.
- Colton D., Kress R. Inverse acoustic and electromagnetic scattering theory. N.Y.: Springer, 1998.
- McLean W. Strongly elliptic systems and boundary integral operators. Cambridge: Cambridge University Press, 2000.
- Constanda Ch., Doty D., Hamill W. Boundary integral equation methods and numerical solutions: thin plates on an elastic foundation. N.Y.: Springer, 2016.
- Kupradze V.D., Basheleishvili, M.O., Burchuladze T.V. Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. North-Holland Series in Applied Mathematics and Mechanics, 25. Amsterdam, N. Y.: North-Holland Publ. Co. 1979.
- John F. Plane waves and spherical means applied to partial differential equations. Interscience tracts in pure and applied mathematics. V. 2. N.Y.: Interscience Publ., 1955.
- Grosser M. et al. Geometric theory of generalized functions with applications to general relativity. Berlin: Kluwer Acad. Publ., 2001.
- Wilson R.B., Cruse T.A. Efficient implementation of anisotropic three dimensional boundary-integral equation stress analysis // Int. J. Num. Meth. Eng. 1978. V. 12. № 9. P. 1383–1397. https://doi.org/10.1002/nme.1620120907
- Deb A., Henry D.P., Jr., Wilson R.B. Alternate BEM formulation for 2- and 3D anisotropic thermoelasticity // Int. J. Solids Struct. 1991. V. 27. № 13. P. 1721–1738. https://doi.org/10.1016/0020-7683(91)90071-M
- Kuznetzov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. V. 84. P. 1–7. https://doi.org/10.1016/j.wavemoti.2018.09.018
- Kuznetsov S.V. Fundamental and singular solutions of Lamé equations of media with arbitrary anisotropy // Quart. Appl. Math. 2005. V. 63. № 3. P. 455–467. https://doi.org/10.1090/S0033-569X-05-00969-X
- Gegelia T., Buchukuri T. Some dynamic problems of the theory of electroelasticity // Mem. Differential Equations Math. Phys. 1997. V. 10. P. 1–53.
- Bourbaki N. Théories spectrales. Ch. 1, 2. Berlin: Springer. 2019.
- Marti J.-A. Nonlinear algebraic analysis of delta shock wave solutions to Burgers’ equation // Pacific J. Math. 2003. V. 210. P. 165–187.
- Gegelia T., Chichinadze R. Boundary value problems of mechanics of continuum media for a sphere // Mem. Differential Equations Math. Phys. 1996. V. 7. P. 1–222.
- Sanchez-Palencia E. Non homogeneous media and vibration theory. Lecture notes in physics. V. 127. Berlin: Springer, 1980.
- Fairweather G., Karageorghis A., Martin P.A. The method of fundamental solutions for scattering and radiation problems // Eng. Anal. Bound. Elem. 2003. V. 27. № 7. P. 759–769. https://doi.org/10.1016/S0955-7997(03)00017-1
- Iovane G., Nasedkin A.V., Passarella F. Fundamental solutions in antiplane elastodynamic problem for anisotropic medium under moving oscillating source // Eur. J. Mech. A/Solids. 2004. V. 23. № 6. P. 935–943. https://doi.org/10.1016/j.euromechsol.2004.09.002
- Iovane G., Nasedkin A.V., Passarella F. Moving oscillating loads in 2D anisotropic elastic medium: plane waves and fundamental solutions // Wave Motion. 2005. V. 43. № l. P. 51–66. https://doi.org/10.1016/j.wavemoti.2005.06.002
- Kleiman R.E., Roach G.F. On modified Green functions in exterior problems for the Helmholtz equations // R. Soc. Lond. 1982. V. 383. № 1785. P. 313–332. https://doi.org/10.1098/rspa.1982.0133
- Kleinman R.E., Roach G.F. Boundary integral equation for the three-dimension Helmholtz equations // SIAM Rev. 1974. V. 16. № 2. P. 214–236. https://www.jstor.org/stable/2028461
- Kuznetsov S.V. Surface waves of non-Rayleigh type // Quart. Appl. Math. 2003. V. 61. P. 575–583. https://doi.org/10.1090/qam/1999838
- Yang S.A. Evaluation of the Helmholtz boundary integral equation and its normal and tangential derivatives in two dimensions // J. Sound Vibr. 2007. V. 301. № 3–5. P. 864–877. https://doi.org/10.1016/j.jsv.2006.10.023
- Wang C.Y., Achenbach J.D. Elastodynamic fundamental solutions for anisotropic solids // Geophys. Int. J. 1994. V. 118. № 2. P. 384–92. https://doi.org/10.1111/j.1365-246X.1994.tb03970.x
- Tonon F., Pan E., Amadei B. Green’s functions and boundary element method formulation for 3D anisotropic media // Comput. Struct. 2001. V. 79. № 5. P. 469–482. https://doi.org/10.1016/S0045-7949(00)00163-2
- Kuznetsov S.V. On the operator of the theory of cracks // C. R. Acad. Sci. Paris. 1996. V. 323. P. 427–432.
- Ilyashenko A.V. et al. Pochhammer–Chree waves: polarization of the axially symmetric modes // Arch. Appl. Mech. 2018. V. 88. P. 1385–1394. https://doi.org/10.1007/s00419-018-1377-7
- Kravtsov A.V. et al. Finite element models in Lamb’s problem // Mech. Solids. 2011. V. 46. P. 952–959. https://doi.org/10.3103/S002565441106015X
- Kuznetsov S.V., Terentjeva E.O. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acoust. Phys. 2015. V. 61. № 3. P. 356–367. https://doi.org/10.1134/S1063771015030112
- Norris A.N. Dynamic Green’s functions in anisotropic piezoelectric, thermoelastic and poroelectric solids // R. Soc. Lond. 1994. V. 447. № 1929. P. 175–188. https:// https://doi.org/10.1098/rspa.1994.0134
- Tverdokhlebov A., Rose J. On Green’s functions for elastic waves in anisotropic media // J. Acoust. Soc. Am. 1988. V. 83. № l. P. 118–121. https://doi.org/10.1121/1.396437
- Telles J.C.F., Brebbia C.A. Boundary element solution for half-plane problems // Int. J. Solids Struct. 1981. V. 17. № 12. P. 1149–1158. https://doi.org/10.1016/0020-7683(81)90094-9
- Spyrakos C.C., Ahtes H. Time domain boundary element method approaches in elastodynamics: a comparative study // Comp. Struct. 1986. V. 24. № 4. P. 529–535. https://doi.org/10.1016/0045-7949(86)90191-4
- Singh K.M., Tanaka M. Elementary analytical integrals required in subtraction of singularity method for evaluation of weakly singular boundary integrals // Eng. Anal. Bound. Elem. 2007. V. 31. № 3. P. 241–247. https://doi.org/10.1016/j.enganabound.2006.05.003
- Saez A., Dominguez J. Far field dynamic Green’s functions for BEM in transversely isotropic solids // Wave Motion. 2000. V. 32. № 1. P. 113–123. https://doi.org/10.1016/S0165-2125(00)00032-9
- Koegl M. Free vibration analysis of anisotropic solids with the boundary element method // Eng. Anal. Bound. Elem. 2003. V. 27. № 2. P. 107–114. https://doi.org/10.1016/S0955-7997(02)00088-7
- Hayir A., Bakirtas I. A note on a plate having a circular cavity excited by plane harmonic SH waves // J. Sound Vibr. 2004. V. 271. № 1–2. P. 241–255. https://doi.org/10.1016/S0022-460X(03)00751-X
- Dumir P.C., Mehta A.K. Boundary element solution for elastic orthotropic half-plan problem // Comp. Struct. 1978. V. 26. № 3. P. 431–438. https://doi.org/10.1016/0045-7949(87)90043-5
- Kuznetsov S.V. Seismic waves and seismic barriers // Acoust. Phys. 2011. V. 57. № 3. P. 420–436. https://doi.org/10.1134/S1063771011030109
- Djeran-Maigre I. et al. Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates // Acoust. Phys. 2014. V. 60. P. 200–207. https://doi.org/10.1134/S106377101402002X
Arquivos suplementares
