Quaternion Methods and Regular Models of Celestial Mechanics and Space Flight Mechanics: Local Regularization of the Singularities of the Equations of the Perturbed Spatial Restricted Three-Body Problem Generated by Gravitational Forces
- Authors: Chelnokov Y.N.1
-
Affiliations:
- Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences, 410028, Saratov, Russia
- Issue: No 5 (2023)
- Pages: 27-57
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/137547
- DOI: https://doi.org/10.31857/S0572329922600591
- EDN: https://elibrary.ru/QWJVMZ
- ID: 137547
Cite item
Abstract
The problem of local regularization of differential equations of a perturbed spatial restricted three-body problem is studied: elimination of singularities (dividing by zero) generated by gravity forces of differential equations of perturbed spatial motion of a material point M, which has a negligibly small mass, in the vicinity of two gravitating points M0 and M1 by writing equations of motion in rotating coordinate systems, the use of new regular variables and the regularizing transformation of time. Various systems of regular quaternion differential equations (RQDE) for this problem are obtained. The following groups of variables act as variables in these equations: (1) four-dimensional Kustaanheimo–Stiefel variables, Keplerian energies and time t, (2) distances from the point M to the points M0 and M1, modules of the vectors of the moment of velocities of the point M with respect to the points M0 and M1, Keplerian energy, time t and Euler (Rodrigues–Hamilton) parameters characterizing the orientations of the orbital coordinate systems in the inertial coordinate system; (3) two-dimensional Levi-Civita variables describing the motion of the point M in ideal coordinate systems, Keplerian energies, time t and Euler parameters characterizing the orientations of ideal coordinate systems in the inertial coordinate system and being osculating elements (slowly changing variables) for the motion of the point M in the neighborhood gravitating point M0 or M1, respectively. To construct the RQDE, the equations of the perturbed spatial restricted three-body problem, written either in nonholonomic (azimuthally free), or in orbital, or in ideal coordinate systems, were used as initial ones; “fictitious” times τ0 and τ1 are used as new independent variables (i.e., regularizing differential transformations of the Sundmann time are used) or angular variables φ0 and φ1, which are traditionally used in the study of orbital motion as part of polar coordinates. To match the two independent variables used in the vicinity of the gravitating points M0 and M1, additional differential equations are used.
The obtained various locally regular quaternion differential equations of the perturbed spatial restricted three-body problem make it possible to develop regular analytical and numerical methods for studying the motion of a body of negligibly small mass in the vicinity of two other bodies with finite masses, and also make it possible to construct regular algorithms for the numerical integration of these equations. The equations can be effectively used to study the orbital motion of celestial and cosmic bodies and spacecraft, to predict their motion, as well as to solve problems of controlling the orbital motion of spacecraft and solving problems of inertial navigation in space.
Keywords
About the authors
Yu. N. Chelnokov
Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences, 410028, Saratov, Russia
Author for correspondence.
Email: ChelnokovYuN@gmail.com
Россия, Саратов
References
- Aarseth S.J. and Zare K.A. Regularization of the Three-Body Problem // Celest. Mech. 1974. V. 10. P. 185–205. https://doi.org/10.1007/BF01227619
- Poincare H. Sur l’uniformisation des fonctions analytiques // Acta Math. 1908. V. 31. P. 1–64. https://doi.org/10.1007/BF02415442
- Sundman K.F. Memoire sur le probleme des trois crops // Acta Math. 1913. V. 36. P. 105–179. https://doi.org/10.1007/BF02422379
- Lemaitire G. Regularization of the three-body problem // Vistas Astron. 1955. № 1. P. 207–215. https://doi.org/10.1016/0083-6656(55)90028-3
- Thiele T.N. Recherches numeriques concernant des solutions periodiques d’un cas special du probleme des trois corps // Astron. Nachr. 1895. V. 138. № 1. P. 17. https://doi.org/10.1002/asna.18951380102
- Burrau C. Uber Einige in Aussicht Genommene Berechnung, Betreffend einen Spezialfall des Dreikorperproblems // Vierteljahrschrift Astron. Ges. 1906. V. 41. P. 261.
- Birkhoff G.D. The restricted problem of three bodies // Rend. Circ. Mat. Palermo. 1915. V. 39. № 1. P. 265–334. https://doi.org/10.1007/BF03015982
- Waldvogel J.A new regularization of the planar problem of three bodies // Celes. Mech. 1972. № 6. P. 221–231. https://doi.org/10.1007/BF01227784
- Roman R., Szucs-Csillik I. Generalization of Levi-Civita regularization in the restricted three-body problem // Astrophys. Space Sci. 2014. V. 349. P. 117–123. https://doi.org/10.1007/s10509-013-1628-6
- Aarseth S.J. Gravitational N-Body Simulations. N.Y.: Cambridge Univ. Press, 2003. 408 p.
- Бордовицына Т.В. Современные численные методы в задачах небесной механики. М.: Наука, 1984. 136 с.
- Челноков Ю.Н. Кватернионная регуляризация уравнений задачи двух тел и ограниченной задачи трех тел // ХI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики: сборник докладов (Казань, 20–24 августа 2015 г.) / Cост. Д.Ю. Ахметов, А.Н. Герасимов, Ш.М. Хайдаров, под ред. Д.А. Губайдуллина, А.М. Елизарова, Е.К. Липачёва. Казань: Изд-во Казан. ун-та, 2015. С. 4051–4053.
- Челноков Ю.Н. Кватернионная регуляризация уравнений возмущенной пространственной ограниченной задачи трех тел. I // Изв. РАН. МТТ. 2017. № 6. С. 24–54.
- Челноков Ю.Н. Кватернионная регуляризация уравнений возмущенной пространственной ограниченной задачи трех тел. II // Изв. РАН. МТТ. 2018. № 6. С. 41–63.
- Челноков Ю.Н. К регуляризации уравнений пространственной задачи двух тел // Изв. АН СССР. Механика твердого тела. 1981. № 6. С. 12–21.
- Челноков Ю.Н. О регулярных уравнениях пространственной задачи двух тел // Изв. АН СССР. МТТ. 1984. № 1. С. 151–158.
- Челноков Ю.Н. Анализ оптимального управления движением точки в гравитационном поле с использованием кватернионов // Изв. РАН. ТиСУ. 2007. № 5. С. 18–44.
- Челноков Ю.Н. Кватернионные модели и методы динамики, навигации и управления движением. М.: Физматлит, 2011. 560 с.
- Челноков Ю.Н. Кватернионные методы и регулярные модели небесной механики и механики космического полета: использование параметров Эйлера (Родрига–Гамильтона) для описания орбитального (траекторного) движения. II: Возмущенная пространственная ограниченная задача трех тел // Изв. РАН. МТТ. 2023. № 1. С. 142–171. https://doi.org/10.31857/S0572329922600293
- Stiefel E.L., Scheifele G. Linear and Regular Celestial Mechanics. Berlin: Springer, 1971. 350 p. (Штифель Е., Шейфеле Г. Линейная и регулярная небесная механика. М.: Наука, 1975. 304 с.)
- Челноков Ю.Н., Логинов М.Ю. Новые кватернионные модели регулярной механики космического полета и их приложения в задачах прогноза движения космических тел и инерциальной навигации в космосе // Сборник материалов: XXVIII Санкт-Петербургская международная конференция по интегрированным навигационным системам. Санкт-Петербург, 2021. С. 292–295.
- Челноков Ю.Н. Кватернионная регуляризация в небесной механике и астродинамике и управление траекторным движением. II // Космические исследования. 2014. Т. 52. № 4. С. 322–336.
- Levi-Civita T.: Sur la regularization du probleme des trios corps // Acta Math. 1920. V. 42. P. 99–144. https://doi.org/10.1007/BF02404404
- Chelnokov Y.N. Quaternion methods and models of regular celestial mechanics and astrodynamics // Appl. Math. Mech. (Engl. Ed). 2022. V. 43. № 1. P. 21–80. https://doi.org/10.1007/s10483-021-2797-9
Supplementary files
