Analysis of Dynamics and Control During the Deployment of an Annular Tether Group of Spacecraft

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article considers a method for forming a rotating tether group of small spacecraft in the form of a regular polygon. To create an external torque acting on the entire system as a whole, low-thrust engines are used, and the directions of the reactive forces are unchanged in the coordinate systems associated with the spacecraft. The release of the cables is controlled by measuring their length and speed in accordance with the nominal program, which assumes that the mechanisms of the release of the cables work only for their braking. The nominal program is built according to a simplified model of the system's motion, built using the Lagrange equations. The feasibility of the deployment program is checked using a more complete model of the spatial motion of the system, written in a geocentric fixed coordinate system and taking into account the extensibility of the cables, the one-sidedness of the mechanical links corresponding to them, the operation of the control system, disturbances associated with the initial conditions of motion, etc. A more complete model of motion takes into account the motion of space vehicles relative to their centers of mass as solid bodies of finite dimensions, which leads to perturbations in the directions of action of reactive forces. Numerical examples are given of the deployment of ring tether groups of small spacecraft in the form of polygons with up to seven vertices, inclusive, under the action of disturbances.

作者简介

Yu. Zabolotnov

Samara National Research University

Email: yumz@yandex.ru
Samara, 443086 Russia

A. Nazarova

Samara National Research University

Email: anazarova63@gmail.com
Samara, 443086 Russia

Changqing Wang

Northwestern Polytechnical University

编辑信件的主要联系方式.
Email: wangcq@nwpu.edu.cn
Xi'an, 710072 China

参考

  1. Белецкий В.В., Левин Е.М. Динамика космических тросовых систем. М.: Наука, 1990. 336 с.
  2. Kumar K.D., Yasaka T. Rotating formation flying of three satellites using tethers // J. Spacecr. 2004. V. 41. № 6. P. 973–985. https://doi.org/10.2514/1.14251
  3. Kim M., Hall C.D. Control of a rotating variable-length tethered system // J. Guid. Contr. Dyn. 2004. V. 27. № 5. P. 849–858. https://doi.org/10.2514/1.3226
  4. Williams P. Optimal deployment/retrieval of a tethered formation spinning in the orbital plane // J. Spacecr. 2006. V. 43. № 3. P. 638–650. https://doi.org/10.2514/1.17093
  5. Su B., Zhang F., Huang P. Robust control of triangular tethered satellite formation with unmeasured velocities // Acta Astronaut. 2021. V. 186. P. 190–202. https://doi.org/10.1016/j.actaastro.2021.04.045
  6. Razzaghi P., Assadian N. Study of the Triple-Mass Tethered Satellite System under Aerodynamic Drag and J2 Perturbations // Adv. Space Res. 2015. V. 56 (10). P. 2141–2150. https://doi.org/10.1016/J.ASR.2015.07.046
  7. Cai Z., Li X., Wu Z. Deployment and retrieval of a rotating triangular tethered satellite formation near libration points // Acta Astronaut. 2014. V. 98. P. 37–49. https://doi.org/10.1016/j.actaastro.2014.01.015
  8. Cai Z., Li X., Zhou H. Nonlinear dynamics of a rotating triangular tethered satellite formation near libration points // Aerosp. Sci. Technol. 2015. V. 42. P. 384–391. https://doi.org/10.1016/j.ast.2015.02.005
  9. Pizarro-Chong A., Misra A.K. Dynamics of multi-tethered satellite formations containing a parent body // Acta Astronaut. 2008. V. 63. P. 1188–1202. https://doi.org/10.1016/j.actaastro.2008.06.021
  10. Alary D., Andreev K., Boyko P. et al. Dynamics of multi-tethered pyramidal satellite formation // Acta Astronaut. 2015. V. 117. P. 222–230. https://doi.org/10.1016/J.ACTAASTRO.2015.08.011
  11. Yarotsky D., Sidorenko V., Pritykin D. Three-dimensional multi-tethered satellite for-mation with the elements moving along Lissajous curves // Celest. Mech. Dyn. Astron. 2016. V. 125. № 3. P. 309–322. https://doi.org/10.1007/s10569-016-9683-2
  12. Ван Ч., Заболотнов Ю.М. Анализ динамики формирования тросовой группировки из трех наноспутников с учетом их движения вокруг центров масс // ПММ. 2021. Т. 85. № 1. С. 21–43. https://doi.org/10.31857/S0032823521010082
  13. Заболотнов Ю.М. Управление развертыванием орбитальной тросовой системы, состоящей из двух малых космических аппаратов // Космич. исслед. 2017. Т. 55. № 3. С. 236–246. https://doi.org/10.7868/S002342061702008X

补充文件

附件文件
动作
1. JATS XML
2.

下载 (42KB)
3.

下载 (82KB)
4.

下载 (56KB)
5.

下载 (99KB)
6.

下载 (145KB)
7.

下载 (290KB)
8.

下载 (506KB)

版权所有 © Ю.М. Заболотнов, А.А. Назарова, Чанцин Ван, 2023

##common.cookie##