Correction of a Strapdown Inertial Navigation System During Descent in the Atmosphere

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article deals with the problem on determining the angular position during descent on an apparatus with low lift-drag ratio. A solution is presented using the least squares method, which reduces to determining the orientation quaternion using a system of linear algebraic equations. The proposed method is based on the algebraic properties of quaternions. A vibrating string accelerometer and a fiber optic gyroscope are used to obtain acceleration and angular velocity measurements. Data on the speed and coordinates of the device are available according to the readings of the satellite navigation equipment.

Sobre autores

O. Korolev

Moscow Institute of Physics and Technology (State University); S.P. Korolev Rocket and Space Public Corporation Energia (RSC Energia)

Autor responsável pela correspondência
Email: oleg.korolev@rsce.ru
Dolgoprudny, Moscow region, 141700 Russia; Korolev, Moscow region, 141070 Russia

Bibliografia

  1. Евдокимов С.Н., Климанов С.И., Комарова Л.И., Микрин Е.А. Управление угловым движением спускаемого аппарата типа “Союз” при возвращении с орбиты спутника Земли // Изв. РАН. ТиСУ. 2011. № 5. С. 134–143.
  2. Легостаев В.П., Микрин Е.А., Орловский И.В., Борисенко Ю.Н., Платонов В.Н., Евдокимов С.Н. Создание и развитие систем управления движением космических кораблей “Союз” и “Прогресс”: опыт эксплуатации, планируемая модернизация // Труды МФТИ. 2009. Т. 1. № 3. С. 4–13.
  3. Улыбышев У.П. Наведение космического корабля с малым аэродинамическим качеством в точку посадки // Изв. РАН. Косм. иссл. 2010. № 6. С. 549–556.
  4. Аванесов Г.А., Красиков В.А., Никитин А.В., Сазонов В.В. Оценка точности определения параметров ориентации системы координат астроизмерительного прибора БОКЗ-М по экспериментальным данным // Изв. РАН. Косм. иссл. 2015. № 4. С. 292–305. https://doi.org/10.7868/S0023420615030024
  5. Микрин Е.А., Михайлов М.В., Рожков С.Н., Семенов А.С. Результаты летного эксперимента на МКС по исследованию влияния переотражений на решение задач навигации, ориентации и сближения по измерениям аппаратуры спутниковой навигации // Гироскопия и навигация. 2012. № 1. С. 42–56.
  6. Александров А.П., Прокудин Ю.П., Харьков И.А., Шустров А.Д. Применение вибрационно-струнных акселерометров в системах управления космических аппаратов // Полет. 2004. № 10. С. 18–25.
  7. Голован А.А., Мишин В.Ю., Молчанов А.В., Чиркин М.В. Метод анализа влияния погрешностей гироскопического канала бесплатформенной инерциальной навигационной системы на погрешности инерциального счисления // Изв. РАН. ТиСУ. 2021. № 4. С. 130–141. https://doi.org/10.31857/S0002338821040041
  8. Челноков Ю.Н. Кватернионные и бикватернионные модели и методы механики твердого тела и их приложения. Геометрия и кинематика движения. М.: Физматлит, 2006. 512 с.
  9. Микрин Е.А., Михайлов М.В. Ориентация, выведение, сближение и спуск космических аппаратов по измерениям от глобальных спутниковых навигационных систем. М.: МГТУ им. Н.Э. Баумана, 2017. 357 с.
  10. Шангареев А.Т., Тимаков С.Н., Платонов В.Н. Применение фильтра Калмана к задачам управления причаливанием космических аппаратов // Косм. техн. технол. 2016. № 4 (15). С. 57–66.
  11. Бранец В.Н. Лекции по теории бесплатформенных инерциальных навигационных систем управления: учеб. пособие. М.: МФТИ, 2009. 304 с.
  12. Борисенко Н.Ю., Сумароков А.В. Об ускоренном построении орбитальной ориентации грузовых и транспортных кораблей серий “Союз МС” и “Прогресс МС” // Изв. РАН. ТиСУ. 2017. № 5. С. 131–141. https://doi.org/10.7868/S0002338817050110

Declaração de direitos autorais © О.Е. Королев, 2022

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies