TNFRSF12A mRNA Expression and distribution of TNFRSF12A+ cells in rat liver during thioacetamide-induced fibrogenesis

Capa

Citar

Texto integral

Resumo

TNFRSF12A mRNA expression and distribution of TNFRSF12A+ cells were studied in detail for the first time at different stages of fibrosis in rat liver. Under physiological conditions, the expression level of TNFRSF12A mRNA was 0.224 (95% CI: 0.170–0.277). At the same time, cells expressing the TNFRSF12A marker were practically absent. In bridging fibrosis, the first peak of TNFRSF12A mRNA growth (p = 0.000) and an increase in the area of TNFRSF12A+ cells (p = 0.000) was established. The second peak (p = 0.000) was detected during the process of transformation of fibrosis into cirrhosis. At the stage of incomplete cirrhosis, a sharp drop was noted. A subsequent increase in the expression of TNFRSF12A mRNA and the area of TNFRSF12A+ cells was observed from the stage of significant cirrhosis. Immunohistochemical method revealed two groups of TNFRSF12A+ cells. In the sinusoidal capillaries TNFRSF12A+, the cells had a shape close to flat and resembled endotheliocytes, while in the fibrous connective tissue they were rounded. The number of α-SMA+ cells increased gradually (p = 0.000) before the onset of significant cirrhosis, and then there was a sharp increase (p = 0.000).

Texto integral

Acesso é fechado

Sobre autores

Elena Lebedeva

Vitebsk State Order of Peoples’ Friendship Medical University

Autor responsável pela correspondência
Email: lebedeva.ya-elenale2013@yandex.ru
Belarus, Frunze Ave., 27, Vitebsk, 210009

Anatoly Shchastniy

Vitebsk State Order of Peoples’ Friendship Medical University

Email: lebedeva.ya-elenale2013@yandex.ru
Belarus, Frunze Ave., 27, Vitebsk, 210009

Andrei Babenka

Belarussian State Medical University

Email: lebedeva.ya-elenale2013@yandex.ru
Belarus, Dzerzhinsky ave., 83, building 15, Minsk, 220116

Bibliografia

  1. Банин В.В., Быков В.Л. Международные термины по цитологии и гистологии человека с официальным списком русских эквивалентов. М.: ГЭОТАР-Медиа, 2009. 272 с.
  2. Коржевский Д.Э. Теоретические основы и практическое применение методов иммуногистохимии. СПб.: СпецЛит, 2014. 119 с.
  3. Жижин К.С. Медицинская статистика: учебное пособие. Ростов н/Д: Феникс, 2007. 160 с.
  4. Breit H.C., Block K.T., Winkel D.J., Gehweiler J.E., Henkel M.J., Weikert T., Stieltjes B., Boll D.T., Heye T.J. Evaluation of liver fibrosis and cirrhosis on the basis of quantitative T1 mapping: Are acute inflammation, age and liver volume confounding factors? // Eur. J. Radiol. 2021. № 141. Р. 109789. https://doi.org/10.1016/j.ejrad.2021.109789
  5. Burkly L.C., Michaelson J.S., Hahm K., Jakubowski A., Zheng T.S. TWEAKing tissue remodeling by a multifunctional cytokine: role of TWEAK/Fn14 pathway in health and disease // Cytokine. 2007. V. 40. № 1. Р. 1–16. https://doi.org/10.1016/j.cyto.2007.09.007
  6. Cai J., Hu M., Chen Z., Ling Z.J. The roles and mechanisms of hypoxia in liver fibrosis // Transl. Med. 2021. V. 19. № 1. Р. 186. https://doi.org/10.1186/s12967-021-02854-x
  7. Chen H.N., Wang D.J., Ren M.Y., Wang Q.L., Sui S.J. TWEAK/Fn14 promotes the proliferation and collagen synthesis of rat cardiac fibroblasts via the NF-кB pathway // Mol. Biol. Rep. 2012. V. 39. № 8. Р. 8231–41. https://doi.org/10.1007/s11033-012-1671-3
  8. Chen W., Liu Y., Chen J., Ma Y., Song Y., Cen Y., You M., Yang G. The Notch signaling pathway regulates macrophage polarization in liver diseases // Int. Immunopharmacol. 2021. № 99. Р. 107938. https://doi.org/10.1016/j.intimp.2021.107938
  9. Cheng D., Chai J., Wang H., Fu L., Peng S., Ni X. Hepatic macrophages: Key players in the development and progression of liver fibrosis // Liver Int. 2021. V. 41. № 10. Р. 2279–2294. https://doi.org/10.1111/liv.14940
  10. Dwyer B.J., Jarman E.J., Gogoi-Tiwari J., Ferreira-Gonzalez S., Boulter L., Guest R.V., Kendall T.J., Kurian D., Kilpatrick A.M., Robson A.J., O’Duibhir E., Man T.Y., Campana L., Starkey Lewis P.J., Wigmore S.J., Olynyk J.K., Ramm G.A., Tirnitz-Parker J.E.E., Forbes S.J. TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression // J. Hepatol. 2021. V. 74. № 4. Р. 860–872. https://doi.org/10.1016/j.jhep.2020.11.018
  11. Esmail M.M., Saeed N.M., Michel H.E., El-Naga R.N. The ameliorative effect of niclosamide on bile duct ligation induced liver fibrosis via suppression of NOTCH and Wnt pathways // Toxicol. Lett. 2021. № 347. Р. 23–35. https://doi.org/10.1016/j.toxlet.2021.04.018
  12. Everhart J.E., Wright E.C., Goodman Z.D., Dienstag J.L., Hoefs J.C., Kleiner D.E., Ghany M.G., Mills A.S., Nash S.R., Govindarajan S., Rogers T.E., Greenson J.K., Brunt E.M., Bonkovsky H.L., Morishima C., Litman H.J., Group H. ALT-C. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial // Hepatology. 2010. V. 51. № 2. Р. 585–94. https://doi.org/10.1002/hep.23315
  13. Gomez I.G., Roach A.M., Nakagawa N., Amatucci A., Johnson B.G., Dunn K., Kelly M.C., Karaca G., Zheng T.S., Szak S., Peppiatt-Wildman C.M., Burkly L.C., Duffield J.S. TWEAK-Fn14 Signaling Activates Myofibroblasts to Drive Progression of Fibrotic Kidney Disease // J Am Soc. Nephrol. 2016. V. 27. № 12. Р. 3639–3652. https://doi.org/10.1681/ASN.2015111227
  14. Guerrier M., Attili F., Alpini G., Glaser S. Prolonged administration of secretin to normal rats increases biliary proliferation and secretin-induced ductal secretory activity // Hepatobiliary Surg. Nutr. 2014. V. 3. № 3. Р. 118–25. https://doi.org/10.3978/j.issn.2304-3881.2014.04.04
  15. Jakubowski A., Ambrose C., Parr M., Lincecum J.M., Wang M.Z., Zheng T.S., Browning B., Michaelson J.S., Baetscher M., Wang B., Bissell D.M., Burkly L.C. TWEAK induces liver progenitor cell proliferation // J. Clin. Invest. 2005. V. 115. № 9. Р. 2330–40. https://doi.org/10.1172/JCI23486
  16. Khan S., Saxena R. Regression of Hepatic Fibrosis and Evolution of Cirrhosis: A Concise Review // Adv. Anat. Pathol. 2021. V. 28. № 6. Р. 408–414. https://doi.org/10.1097/PAP.0000000000000312
  17. Kisseleva T., Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression // Nat. Rev. Gastroenterol. Hepatol. 2021. V. 18. № 3. Р. 151–166. https://doi.org/10.1038/s41575-020-00372-7
  18. Li N., Hu W.J., Shi J., Xue J., Guo W.X., Zhang Y., Guan D.X., Liu S.P., Cheng Y.Q., Wu M.C., Xie D., Liu S.R., Cheng S.Q. Roles of fibroblast growth factor-inducible 14 in hepatocellular carcinoma // Asian Pac. J. Cancer. Prev. 2013. V. 14. № 6. Р. 3509–14. https://doi.org/10.7314/apjcp.2013.14.6.3509
  19. Li S., Gan L., Tian Y.J., Tian Y., Fan R.Z., Huang D., Yuan F.Y., Zhang X., Lin Y., Zhu Q.F., Tang G.H., Yan X.L., Yin S. Presegetane diterpenoids from Euphorbia sieboldiana as a new type of anti-liver fibrosis agents that inhibit TGF-β/Smad signaling pathway // Bioorg. Chem. 2021. № 114. Р. 105222. https://doi.org/10.1016/j.bioorg.2021.105222
  20. Liu Q.W., Ying Y.M., Zhou J.X., Zhang W.J., Liu Z.X., Jia B.B., Gu H.C., Zhao C.Y., Guan X.H., Deng K.Y., Xin H.B. Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice // Stem. Cell Res. Ther. 2022. V. 13. № 1. Р. 224. https://doi.org/10.1186/s13287-022-02906-z
  21. Odagiri N., Matsubara T., Sato-Matsubara M., Fujii H., Enomoto M., Kawada N. Anti-fibrotic treatments for chronic liver diseases: The present and the future // Clin. Mol. Hepatol. 2021. V. 27. № 3. Р. 413–424. https://doi.org/10.3350/cmh.2020.0187
  22. Rockey D.C., Friedman S.L. Fibrosis Regression After Eradication of Hepatitis C Virus: From Bench to Bedside // Gastroenterology. 2021. V. 160. № 5. Р. 1502–1520.e1. https://doi.org/10.1053/j.gastro.2020.09.065
  23. Tadokoro T., Morishita A., Masaki T. Diagnosis and Therapeutic Management of Liver Fibrosis by MicroRNA // Int. J. Mol. Sci. 2021. V. 22. № 15. Р. 8139. https://doi.org/10.3390/ijms22158139
  24. Voutilainen S.H., Kosola S.K., Lohi J., Mutka A., Jahnukainen T., Pakarinen M., Jalanko H. Expression of 6 Biomarkers in Liver Grafts After Pediatric Liver Transplantation: Correlations with Histology, Biochemistry, and Outcome // Ann Transplant. 2020. № 25. Р. e925980. https://doi.org/10.12659/AOT.925980
  25. Wang M., Xie Z., Xu J., Feng Z. TWEAK/Fn14 axis in respiratory diseases // Clin. Chim. Acta. 2020. № 509. Р. 139–148. https://doi.org/10.1016/j.cca.2020.06.007
  26. Weiskirchen R. Special Issue on “Cellular and Molecular Mechanisms Underlying the Pathogenesis of Hepatic Fibrosis” // Cells. 2020. V. 9. № 5. Р. 1105. https://doi.org/10.3390/cells9051105
  27. Wilhelm A., Shepherd E.L., Amatucci A., Munir M., Reynolds G., Humphreys E., Resheq Y., Adams D.H., Hübscher S., Burkly L.C., Weston C.J., Afford S.C. Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation // J. Pathol. 2016. V. 239. № 1. Р. 109–21. https://doi.org/10.1002/path.4707
  28. Winkles J.A. The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting // Nat. Rev. Drug. Discov. 2008. V. 7. № 5. Р. 411–25. https://doi.org/10.1038/nrd2488
  29. Zhang Y., Zeng W., Xia Y. TWEAK/Fn14 axis is an important player in fibrosis // J. Cell Physiol. 2021. V. 236. № 5. Р. 3304–3316. https://doi.org/10.1002/jcp.30089
  30. Zheng L., Lv Z., Gong Z., Sheng Q., Gao Z., Zhang Y., Yu S., Zhou J., Xi Z., Wang X. Fn14 hepatic progenitor cells are associated with liver fibrosis in biliary atresia // Pediatr. Surg. Int. 2017. V. 33. № 5. Р. 593–599. https://doi.org/10.1007/s00383-017-4068-5

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Fragment of the liver of rats in the control group. There are no TNFRSF12A+ cells in the liver parenchyma. Immunohistochemical detection of TNFRSF12A+ cells and staining with Mayer's hematoxylin. Increased about. 40×

Baixar (838KB)
3. Fig. 2. An analysis of variance graph is presented: a – dynamics of changes in the level of TNFRSF12A mRNA and the ratio of the area of TNFRSF12A+ cells to the section area. A two-way ANOVA plot is presented; b – dynamics of changes in the number of α-SMA+ cells during the experiment

Baixar (183KB)
4. Fig. 3. Liver fragments of rats with induced cirrhosis after 3 weeks. (a), (b); 17 weeks (c, d) after the start of the experiment. Immunohistochemical staining for TNFRSF12A, counterstaining with Mayer's hematoxylin (a), (c). Immunohistochemical staining for α-SMA, counterstaining with Mayer's hematoxylin (b), (d). ×40 TNFRSF12A+ cells in sinusoidal capillaries: a – arrows; c – highlighted with oval frames; α-SMA+ cells in sinusoidal capillaries (d); b – arrows

Baixar (426KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies