An in vitro Arabidopsis thaliana Root Structural and Functional Characterization

Capa

Citar

Texto integral

Resumo

Two models of Arabidopsis thaliana rhizogenesis in vitro were studied: 1) from callus and 2) leaf explants petioles on the Murashige and Skoog one-tenth strength hormone-free nutrient medium and also with the addition of the growth regulator such as indole-3-butyric acid. Morphological and anatomical studies show significant changes in the structure of the roots formed de novo in vitro from callus tissue, while the organs from leaf explant petioles were similar to those formed from the seed (primary). By Sabinin-Kolosov method, a decrease in the percentage of active root surface was established. Occurrence of the structural changes during in vitro rhizogenesis and their effect on root functionality are discussed.

Sobre autores

I. Bulavin

Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens – National Scientific Center of the RAS”

Autor responsável pela correspondência
Email: cellbiolnbs@yandex.ru
Russia, 298648, Yalta, Nikitskiy Spusk, 52, Str.

A. Sidyakin

Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens – National Scientific Center of the RAS”; Institute of Biochemical Technologies, Ecology and Pharmacy of Federal State Autonomous Educational Institution of Higher Education “V.I. Vernadsky Crimean Federal University”

Email: cellbiolnbs@yandex.ru
Russia, 298648, Yalta, Nikitskiy Spusk, 52, Str.; Russia, 295007, Simferopol, Academician Vernadsky Avenue, 4

Bibliografia

  1. Ахметова А.Ш., Зарипова А.А. Индукция морфогенеза лука нереидоцветного в культуре in vitro // Экобиотех. 2019. Т. 2. № 4. С. 540−544.
  2. Вечернина Н.А., Таварткиладзе О.К., Бородулина И.Д., Эрст А. Адаптация растений-регенерантов с использованием гидропоники // Известия АлтГУ. 2008. Т. 3. С. 7−10.
  3. Гусева К.Ю., Бородулина И.Д., Мякишева Е.П., Таварткиладзе О.К. Укоренение in vitro сортов картофеля (Solanum tuberosum L.) // Известия АлтГУ. 2013. № 3 (79). С. 56−60.
  4. Дуктова Н.А. Физиологические аспекты селекции твердой пшеницы на устойчивость к корневым гнилям // Земледелие и растениеводство. 2018. № 6. С. 24−27.
  5. Катаева Н.В., Бутенко Р.Г. Клональное микроразмножение растений. М.: Наука, 1983. 96 с.
  6. Климчук Д.О. Варіації ультраструктурної організації мітохондрій в клітинах гороху in vitro // Цитология и генетика. 2001. Т. 35. № 2. С. 36−42.
  7. Кушнір Г.П., Сарнацька В.В. Мікроклональне розмноження рослин. Теорія і практика. К.: Наук. Думка, 2005. 271 с.
  8. Панфилова О.Ф., Пильщикова Н.В., Фаттахова Н.К. Практикум по физиологии растений. М.: РГАУ-МСХА, 2010. 108 с.
  9. Тихомирова Л.И. Особенности индукции морфогенеза из различных фрагментов цветка ириса в культуре in vitro // Turczaninowia. 2010. Т. 13. № 3. С. 147−151.
  10. Amghar I., Ibriz M., Ibrahimi M., Boudra A., Gaboun F., Meziani R., Iraqi D., Mazri M.A., Diria G., Abdelwahd R. In vitro root induction from argan (Argania spinosa (L.) Skeels) adventitious shoots: influence of ammonium nitrate, auxins, silver nitrate and putrescine, and evaluation of plantlet acclimatization // Plants. 2021.V. 10. https://doi.org/10.3390/plants10061062
  11. Banda J., Bellande K., von Wangenheim D., Goh T., Guyomarc’h S., Laplaze L., Bennett M.J. Lateral root formation in Arabidopsis: A well-ordered LRexit // Trends Plant Sci. 2019. V. 24. P. 826−839. https://doi.org/10.1016/j.tplants.2019.06.015
  12. Bairu M.W., Kane M.E. Physiological and developmental problems encountered by in vitro cultured plants // J. Plant Growth Regul. 2011. V. 63. P. 101−103.
  13. Barlow P.W. The root cap: cell dynamics, cell differentiation and cap function // J. Plant Growth Regul. 2002. V. 21. P. 261−286. https://doi.org/10.1007/s00344-002-0034-z
  14. Behnke H.-D., Eschlbeck G. Dilated cisternae in Capparales − an attempt towards the characterization of a specific endoplasmic reticulum // Protoplasma. 1978. V. 97. P. 351−363.
  15. Bones A.M., Evjen K., Iversen T.-H. Characterization and distribution of dilated cisternae of the endoplasmic reticulum in intact plants, protoplasts, and calli of Brassicaceae // Israel J. Bot. 1989. V. 38. P. 177−192.
  16. Budisantoso I., Amalia N., Kamsinah. In vitro callus induction from leaf explants of Vanda sp. stimulated by 2.4-D // Biosaintifika. 2017. V. 9. № 3. P. 492−497. https://doi.org/10.15294/biosaintifika.v9i3.11018
  17. Bulavin I., Brailko V., Zhdanova I. In vitro rhizogenesis of the Lavandula angustifolia cultivars // BIO Web of Conferences. 2020. V. 24. https://doi.org/10.1051/bioconf/20202400017
  18. Capron A., Chatfield S., Provart N., Berleth T. Embryogenesis: pattern formation from a single cell // The Arabidopsis Book. 2009. V. 7. e0126. https://doi.org/10.1199/tab.0126
  19. Chi-ni H., Schuyler S.K. Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima // PCTOC. 1996. V. 44. P. 1−6.
  20. Dalila Z.D., Jaafar H., Manaf A.A. Effects of 2.4-D and kinetin on callus induction of Barringtonia racemosa leaf and endosperm explants in different types of basal media // Asian J. Plant Sci. 2013. V. 12. P. 21−27. https://doi.org/10.3923/ajps.2013.21.27
  21. De Klerk G.J., Arnholdt-Schmitt B., Lieberei R., Neumann K.-H. Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects // Biol. Plant. 1997. V. 39. P. 53–66. https://doi.org/10.1023/A:1000304922507
  22. Delporte F., Pretova A., du Jardin P., Watillon B. Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat // Protoplasma. 2014. V. 251. P. 1455−1470. https://doi.org/10.1007/s00709-014-0647-7
  23. Hilaire E., Paulsen A.Q., Brown C.S., Guikema J.A. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity // Plant Cell Physiol. 1997. V. 38. № 4. P. 490−494.
  24. Iliev I., Kitin P. Origin, morphology, and anatomy of fasciation in plants cultured in vivo and in vitro // Plant Growth Regul. 2011. V. 63. P. 115−129. https://doi.org/10.1007/s10725-010-9540-3
  25. Iversen T.-H. The morphology, occurrence, and distribution of dilated cisternae of the endoplasmic reticulum in tissues of plants of the Cruciferae // Protoplasma. 1970. V. 71. P. 467−477.
  26. Jagiello-Kubiec K., Nowakowska K., Lukaszewska A.J., Pacholczak A. Morpho-anatomical and biochemical changes associated with rooting of micropropagated ninebark cuttings // Plant Cell Tiss. Organ Cult. 2021. V. 147. P. 229–237. https://doi.org/10.1007/s11240-021-02119-x
  27. Karimian R., Lahouti M., Davarpanah S. Effects of different concentrations of 2.4-D and kinetin on callogenesis of Taxus brevifolia Nutt. // J. Appl. Biotechnol. Rep. 2014. V. 1. № 4. P. 167−170.
  28. Labrousse P., Delmail D., Decou R., Carlue M., Lhernould S., Krausz P. Nemesia root hair response to paper pulp substrate for micropropagation // Sci. World J. 2012. Article ID 859243. https://doi.org/10.1100/2012/859243
  29. Louro R.P., Dos Santos A.V., Machado R.D. Ultrastructure of Eucalyptus grandis × Eucalyptus urophylla. I. shoots cultivated in vitro in multiplication and elongation-rooting media // Int. J. Plant Sci. 1999. V. 160. № 2. P. 217−227. https://doi.org/10.1086/314118
  30. Manokari M., Priyadharshini S., Shekhawat M. Micro-structural stability of micropropagated plants of Vitex negundo L. // Microsc. Microanal. 2021. V. 27. № 3. P. 626−634. https://doi.org/10.1017/S1431927621000283
  31. Marín-Méndez W., Sanchéz-Chacón E., Gatica-Arias A.M., Ramírez-Fonseca P., Freer-Bustamante E., Valdez-Melara M. Ultrastructure and histology of organogenesis induced from shoot tips of maize (Zea mays, Poaceae) // Rev. biol. trop. 2009. V. 57. Suppl. 1. P. 129−139.
  32. Martínez Pastur G., Arena M., Hernandez L., Curvetto N., Eliasco E. Histological events during in vitro rooting of Nothofagus nervosa (Fagaceae) // N. Z. J. Bot. 2005. V. 43. № 1. 61−70. https://doi.org/10.1080/0028825X.2005.9512944
  33. Matsushima R., Kondo M., Nishimura M., Hara-Nishimura I. A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER retention signal in Arabidopsis // Plant J. 2003. V. 33. P. 493−502. https://doi.org/10.1046/j.1365-313X.2003.01636.x
  34. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures // Plant Physiol. 1962. V. 15. P. 473−497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  35. McClelland M.T., Smith M.A.L., Carothers Z.B. The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plants // PCTOC. 1990. V. 23. P. 115−123.
  36. Nagano A.J., Matsushima R., Hara-Nishimura I. Activation of an ER-body-localized β-glucosidase via a cytosolic binding partner in damaged tissues of Arabidopsis thaliana // Plant and Cell Physiol. 2005. V. 46. № 7. P. 1140−1148. https://doi.org/10.1093/pcp/pci126
  37. Naija S., Elloumi N., Jbir N., Ammar S., Kevers C. Anatomical and biochemical changes during adventitious rooting of apple rootstocks MM 106 cultured in vitro // C. R. Biol. 2008. V. 331. № 7. P. 518−825. https://doi.org/10.1016/j.crvi.2008.04.002
  38. Özkul M., Özel Ç.A., Yüzbaşıoğlu D., Ünal F. Does 2.4-dichlorophenoxyacetic acid (2.4-D) induce genotoxic effects in tissue cultured Allium roots? // Cytotechnology. 2016. V. 68. P. 2395−2405. https://doi.org/10.1007/s10616-016-9956-3
  39. Pardal R., Heidstra R. Root stem cell niche networks: it’s complexed! Insights from Arabidopsis // J. Exp. Bot. 2021. V. 72. P. 6727−6738. https://doi.org/10.1093/jxb/erab272
  40. Park J.B., Lee K.B., Lee S. Histological study of callus formation and root regeneration from mung bean (Vigna radiata W.) // J. Plant Biol. 2002. V. 45. P. 170−176. https://doi.org/10.1007/BF03030310
  41. Péret B., De Rybel B., Casimiro I., Benková E., Swarup R., Laplaze L., Beeckman T., Bennett M.J. Arabidopsis lateral root development: an emerging story // Trends Plant Sci. 2009. V. 14. P. 399−408. https://doi.org/10.1016/j.tplants.2009.05.002
  42. Rani G., Arora S., Nagpal A. Direct rhizogenesis from in vitro leaves of Withania somnifera (L.) Dunal // J. Herbs Spices Med. Plants. 2003. V. 10. P. 47−54. https://doi.org/10.1300/J044v10n03_05
  43. Reis R.V., Chierrito T.P.C., Silva T.F.O., Albiero A.L.M., Souza L.A., Goncalves J.E., Oliveira A.J.B., Goncalves R.A.C. Morpho-anatomical study of Stevia rebaudiana roots grown in vitro and in vivo // Rev. bras. farmacogn. 2017. V. 27. P. 34−39. https://doi.org/10.1016/j.bjp.2016.08.007
  44. Rogalski M., Moraes L.K.A., Felisbino C., Crestani L., Guerra M.P., Silva A.L. Enraizamento in vitro de porta-enxertos de Prunus // Rev. Bras. Frutic. 2003. V. 25. № 2. P. 293−296.
  45. Rose R.J., Wang X.-D., Nolan K.E., Rolfe B.G. Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene // J. Exp. Bot. 2006. V. 57. № 10. P. 2227−2235. https://doi.org/10.1093/jxb/erj187
  46. Soriano L., de Oliveira C.R., Muniz F.R., Machado I.S. In vitro rhizogenesis of Ananas comosus var. erectifolius under influence of synthetic auxins // Res. Soc. Dev. 2022. V. 11. № 5. e35511528055. https://doi.org/10.33448/rsd-v11i5.28055
  47. Souza J.A., Bettoni J.C., Costa M.D., Baldissera T.C., Mangrich dos Passos J.F., Primieri S. In vitro rooting and acclimatization of “Marubakaido” apple rootstock using indole-3-acetic acid from rhizobacteria // Communications in Plant Sciences. 2022. V. 12. P. 16−23. https://doi.org/10.26814/cps2022003
  48. Tylicki A., Burza W., Kuras M., Dziadczyk E., Malepszy S. Structural and ultrastructural analysis of root primordia in vitro cultures (RPC) of Solanum lycopersicoides Dun // Plant Sci. 2000. V. 156. № 1. P. 73−83. https://doi.org/10.1016/s0168-9452(00)00237-5
  49. Wafa S.N., Mat Taha R., Mohajer S., Mahmad N., Ahmed A.B.A. Organogenesis and ultrastructural features of in vitro grown Canna indica L. // BioMed Res. Int. 2016. V. 2016. Article ID 2820454. https://doi.org/10.1155/2016/2820454
  50. Whaley W.G., Mollenhauer H.H., Leech J.H. The ultrastructure of the meristematic cell // Am. J. Bot. 1960. V. 47. № 6. P. 401−449. https://doi.org/10.2307/2439557
  51. Zhang D.J., Yang Y.J., Liu C.Y., Zhang F., Wu Q.S. Root hair growth and development in response to nutrients and phytohormones / Root Biology. Soil Biology // Eds. Giri B., Prasad R., Varma A. Springer, Cham, 2018. V. 52. P. 65−84. https://doi.org/10.1007/978-3-319-75910-4_3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (31KB)
3.

Baixar (2MB)
4.

Baixar (1MB)
5.

Baixar (3MB)

Declaração de direitos autorais © И.В. Булавин, А.И. Сидякин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies